

Бас Мейер, Лорин Хохштейн и Рене Мозер

Запускаем Ansible

ТРЕТЬЕ ИЗДАНИЕ

Ansible: Up and Running

Automating Configuration Management
and Deployment the Easy Way

Bas Meijer, Lorin Hochstein, and René Moser

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

THIRD EDITION

2023

Бас Мейер, Лорин Хохштейн и Рене Мозер

Запускаем Ansible

Простой способ автоматизации управления
конфигурациями и развертыванием приложений

ТРЕТЬЕ ИЗДАНИЕ

УДК 004.4
ББК 32.372

М42

М42 Бас Мейер, Лорин Хохштейн и Рене Мозер
Запускаем Ansible. Простой способ автоматизации управления кон-
фигурациями и развертыванием приложений. 3-е изд. / пер. с англ.
А. Н. Киселева – М.: ДМК Пресс, 2023. – 482 с.: ил.

 ISBN 978-6-01763-867-2

Среди множества имеющихся инструментов управления конфигура
циями Ansible выделяется своими преимуществами, такими как не-
большой объем, отсутствие необходимости устанавливать что-либо на
управляемые хосты и простота в изучении и освоении.

Наиболее существенное отличие этого издания от предыдущего – до-
бавление шести новых глав, охватывающих применение контейнеров,
фреймворка Molecule, платформы автоматизации Ansible Automation
Platform и коллекций Ansible; приемы создания образов, поддержки об-
лачной инфраструктуры и реализации конвейеров CI/CD.

Книга предназначена разработчикам инструментов infrastructure as
a code для автоматизации задач по подготовке и конфигурированию
инфраструктуры.

Copyright © 2023 Books.kz Limited Liability Partnership Authorized Russian
translation of the English edition of Ansible: Up and Running, 3rd Edition.
ISBN 9781098109158. Copyright © 2022 Bas Meijer.

Все права защищены. Любая часть этой книги не может быть воспроиз-
ведена в какой бы то ни было форме и какими бы то ни было средствами без
письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но, поскольку
вероятность технических ошибок все равно существует, издательство не может га-
рантировать абсолютную точность и правильность приводимых сведений. В связи
с этим издательство не несет ответственности за возможные ошибки, связанные
с использованием книги.

ISBN 978-1-098-10915-8 (англ.) © Bas Meijer, 2022
ISBN 978-6-01763-867-2 (казах.) © Оформление, перевод на русский язык, издание,
	 Books.kz, 2023

Оглавление

Предисловие к третьему изданию...16

Глава 1. Введение..20
Примечание о версиях..21
Ansible: область применения..22
Как работает Ansible..23
Какие преимущества дает Ansible?..24

Простота...24
Широта возможностей..27
Защищенность...30

Не слишком ли проста система Ansible?..33
Что я должен знать?...33
О чем не рассказывается в этой книге...34
Поехали!...34

Глава 2. Установка и настройка...35
Установка Ansible...35

Дополнительные зависимости...36
Запуск Ansible в контейнерах...37
Версия Ansible для разработчиков...37

Подготовка сервера для экспериментов..37
Использование Vagrant для подготовки сервера..37
Передача информации о сервере в Ansible...40
Упрощение задачи с помощью файла ansible.cfg...43
Остановка тестового сервера...46

Удобные настройки Vagrant..46
Переадресация портов и частные IP-адреса...46
Включение переадресации агента...48

Подготовка Docker...49
Подготовка локальной версии Ansible...49
Когда запускаются сценарии провайдеров...50
Плагины Vagrant..50

vagrant-hostmanager..50
vagrant-vbguest..51

Настройка VirtualBox...51
Vagrantfile – это Ruby...51
Настройка промышленного окружения..54
Заключение..55

Глава 3. Сценарии: начало...56
Подготовка...56
Очень простой сценарий..57

Файл конфигурации NGINX..58
Создание веб-страницы..59

6    Оглавление

Создание группы веб-серверов..59
Запуск сценария..60

Сценарии пишутся на YAML...61
Начало файла...62
Конец файла..62
Комментарии...62
Отступы и пробельные строки...62
Строки..62
Булевы выражения..63
Списки..64
Словари..65
Многострочные строковые значения..65
Чистый YAML вместо строковых аргументов...66

Структура сценария...66
Операции...67

Задачи..69
Модули...70
Документация по модулям Ansible..70
Резюме...71

Есть изменения? Отслеживание состояния хоста...71
Становимся знатоками: поддержка TLS..72

Создание сертификата TLS...72
Переменные...73
Когда использовать кавычки в строках Ansible..73
Создание шаблона с конфигурацией NGINX...75
Циклы...76
Обработчики..77
Несколько фактов об обработчиках, которые необходимо помнить..................78
Тестирование...78
Проверка..79
Сценарий...79
Запуск сценария..81

Заключение..83

Глава 4. Реестр: описание серверов..84
Файл реестра..85
Вводная часть: несколько машин Vagrant...85
Поведенческие параметры хостов в реестре...88

Переопределение значений по умолчанию в поведенческих параметрах........90
Группы, группы и еще раз группы...90

Пример: развертывание приложения Django...92
Псевдонимы и порты..95
Группировка групп..95
Имена хостов с номерами (домашние питомцы и стадо)....................................96

Переменные хостов и групп: внутренняя сторона реестра............................96
Переменные хостов и групп: создание собственных файлов........................98
Динамический реестр...101

Оглавление    7

Плагины поддержки реестров..101
Амазон EC2..102
Диспетчер ресурсов Azure..102
Интерфейс сценария динамического реестра..102
Написание сценария динамического реестра..104

Деление реестра на несколько файлов..107
Добавление элементов во время выполнения с помощью

add_host и group_by..108
add_host..108
group_by..110

Заключение..111

Глава 5. Переменные и факты..112
Определение переменных в сценариях...112

Определение переменных в отдельных файлах...112
Структура каталогов...113

Вывод значений переменных...113
Интерполяция переменных...113

Регистрация переменных...114
Факты...118

Просмотр всех фактов, доступных для сервера..119
Вывод подмножества фактов...120
Любой модуль может возвращать факты..121
Локальные факты..122
Использование модуля set_fact для задания новой переменной......................123

Встроенные переменные..123
hostvars...124
inventory_hostname...125
groups...125

Установка переменных из командной строки..126
Приоритет..128

Заключение..129

Глава 6. Введение в Mezzanine: тестовое приложение........................130
Почему сложно развертывать приложения в промышленном окружении......130
База данных PostgreSQL..132
Сервер приложений Gunicorn...133
Веб-сервер NGINX..133
Диспетчер процессов Supervisor..134
Заключение..134

Глава 7. Развертывание Mezzanine с помощью Ansible.......................135
Вывод списка задач в сценарии...135
Организация устанавливаемых файлов..136
Переменные и скрытые переменные..137
Установка большого количества пакетов...139
Добавление выражения become в задачу...139
Обновление кеша диспетчера пакетов apt..140

8    Оглавление

Извлечение проекта из репозитория Git...141
Установка Mezzanine и других пакетов в virtualenv......................................143
Короткое отступление: составные аргументы задач....................................146
Настройка базы данных..148
Создание файла local_settings.py из шаблона..149
Выполнение команд django-manage..152
Запуск своих сценариев на Python в контексте приложения.......................153

Настройка конфигурационных файлов служб..156
Активация конфигурации NGINX..159
Установка сертификатов TLS..160
Установка задания cron для Twitter..161
Сценарий целиком..162
Запуск сценария на машине Vagrant..167
Устранение проблем..168

Не получается извлечь файлы из репозитория Git...168
Недоступен хост с адресом 192.168.33.10.nip.io..168
Bad Request (400)...169

Заключение..169

Глава 8. Отладка сценариев Ansible...170
Информативные сообщения об ошибках..170
Отладка ошибок с SSH-подключением..171
Типичные проблемы с SSH...175

PasswordAuthentication no..175
Подключение по SSH с учетными данными другого пользователя..................175
Ошибка проверки ключа хоста..176
Частные сети..177

Модуль debug...177
Интерактивный отладчик сценариев...177
Модуль assert..179
Проверка сценария перед запуском...182

Проверка синтаксиса..182
Список хостов..183
Список задач..183
Режим проверки..183
Вывод изменений в файлах..184
Теги..185
Ограничение обслуживаемых хостов..186

Заключение..186

Глава 9. Роли: масштабирование сценариев..187
Базовая структура роли...187
Пример: развертывание Mezzanine с использованием ролей.....................189

Использование ролей в сценариях..189
Предварительные и заключительные задачи...190
Роль database для развертывания базы данных..191
Роль mezzanine для развертывания Mezzanine...195

Создание файлов и каталогов ролей с помощью ansible-galaxy..................199

Оглавление    9

Зависимые роли...200
Ansible Galaxy...201

Веб-интерфейс..201
Интерфейс командной строки...202
Требования к оформлению ролей на практике..203
Как поделиться своей ролью..204

Заключение..204

Глава 10. Сложные сценарии..205
Решение проблем с неидемпотентными командами...................................205
Фильтры...209

Фильтр default...209
Фильтры для зарегистрированных переменных..209
Фильтры для путей к файлам...210
Создание собственного фильтра..211

Подстановки...212
file...214
pipe...215
env..215
password...215
template..216
csvfile..216
dig...217
redis..218
Написание собственного плагина подстановки...219

Сложные циклы...220
Плагины with_*...221

with_lines..221
with_fileglob..222
with_dict...222
Циклические конструкции как плагины подстановок.......................................223

Управление циклами...224
Выбор имени переменной цикла...224
Управление выводом..225

Импортирование и подключение..226
Динамическое подключение..228
Подключение ролей..228
Поток управления роли..229

Блоки..230
Обработка ошибок с помощью блоков..230
Шифрование конфиденциальных данных при помощи Vault.....................234

Шифрование с использованием разных паролей...236
Заключение..237

Глава 11. Управление хостами, задачами и обработчиками...............238
Шаблоны для выбора хостов...238
Ограничение обслуживаемых хостов...239

Запуск задачи на управляющей машине...239

10    Оглавление

Сбор фактов вручную..240
Получение IP-адреса хоста...240
Запуск задачи на сторонней машине .. 242
Последовательное выполнение задачи на хостах по одному......................242
Пакетная обработка хостов...244
Однократный запуск...245
Выбор задач для запуска...245

step...246
start-at-task..246
Запуск действий с тегами...246
Пропуск действий с тегами..247

Стратегии выполнения...247
linear...248
free..249

Улучшенные обработчики..251
Обработчики в pre_tasks и post_tasks...251
Принудительный запуск обработчиков...253
Метакоманды..253
Уведомление обработчиков из обработчиков..254
Выполнение обработчиков по событиям..255
Выполнение обработчиков по событиям: случай SSL..256

Заключение..261

Глава 12. Управление хостами Windows...262
Подключение к Windows...262
PowerShell...263
Модули поддержки Windows..266
Наша машина для разработки на Java..266
Добавление локального пользователя...268
Функции Windows..269
Установка программного обеспечения с помощью Chocolatey...................269
Настройки для поддержки Java..270
Обновление Windows..271
Заключение..272

Глава 13. Ansible и контейнеры..273
Kubernetes..274
Жизненный цикл приложения Docker...275
Реестры...275
Ansible и Docker...276
Подключение к демону Docker...276
Пример применения: Ghost..277
Запуск контейнера Docker на локальной машине...277
Создание образа из Dockerfile..278
Отправка образа в реестр Docker...280
Управление несколькими контейнерами на локальной машине................281
Запрос информации о локальном образе..283
Развертывание приложения в контейнере Docker..284

Оглавление    11

MySQL...284
Развертывание базы данных Ghost..285
Веб-сервер...286
Веб-сервер: Ghost..287
Веб-сервер: NGINX..288
Удаление контейнеров..289

Заключение..289

Глава 14. Обеспечение качества с помощью Molecule........................290
Установка и настройка..290
Настройка драйверов в Molecule..291
Создание роли Ansible...292
Сценарии Molecule..293

Желаемое состояние...293
Настройка сценариев в Molecule..294
Управление виртуальными машинами...294
Управление контейнерами...295

Команды Molecule...297
Статический анализ..298

yamllint...299
ansible-lint..299
ansible-later..301

Верификаторы...301
Ansible..302
Goss...302
TestInfra..304

Заключение..305

Глава 15. Коллекции...306
Установка коллекций...306
Вывод списка коллекций..308
Использование коллекций в сценариях...308
Разработка коллекций...309
Заключение..311

Глава 16. Создание образов..312
Создание образов с помощью Packer...312
Vagrant VirtualBox VM..312

Объединение Packer и Vagrant..315
Облачные образы..316
Google Cloud Platform..317
Azure...319
Amazon EC2..320
Сценарий Ansible...322

Образ Docker: GCC 11...323
Заключение..325

Глава 17. Облачная инфраструктура..326
Терминология..330

12    Оглавление

Экземпляр..330
Образ машины Amazon...330
Теги...331

Учетные данные пользователя...331
Переменные окружения...333
Файлы конфигурации...333

Необходимое условие: библиотека Boto3 для Python...................................333
Динамическая инвентаризация...334

Кеширование реестра...336
Другие параметры настройки..336

Определение динамических групп с помощью тегов...................................337
Присваивание тегов имеющимся ресурсам..337
Создание более точных названий групп...338

Виртуальные частные облака...339
Конфигурирование ansible.cfg для использования с ES2..............................340
Запуск новых экземпляров...340
Пары ключей EC2...342

Создание нового ключа..342
Выгрузка открытого ключа...342

Группы безопасности..343
Разрешенные IP-адреса..344
Порты групп безопасности...344

Получение последней версии AMI...345
Добавление нового экземпляра в группу..346
Ожидание запуска сервера...347
Подведение итогов..348
Создание виртуального частного облака...351

Динамическая инвентаризация и VPC..355
Заключение..355

Глава 18. Плагины обратного вызова..356
Плагины стандартного вывода...356

ARA...357
debug..358
default...359
dense...359
json...359
minimal...359
null..359
oneline..359

Плагины уведомлений и агрегирования...360
Зависимости Python..361
foreman...361
jabber..361
junit...362
log_plays...363
logentries..363

Оглавление    13

logstash...363
mail...363
profile_roles..364
profile_tasks..364
say...365
slack..365
splunk...365
timer..366

Заключение..366

Глава 19. Собственные модули...367
Пример: проверка доступности удаленного сервера....................................367

Использование модуля script вместо написания своего модуля.......................368
can_reach как модуль...369

Когда следует разрабатывать модули?...369
Где хранить свои модули...370
Как Ansible вызывает модули...370

Генерация автономного сценария на Python с аргументами
(только модули на Python)...370

Копирование модуля на хост..370
Создание файла с аргументами на хосте (для модулей не на языке Python)......371
Вызов модуля...371

Ожидаемый вывод...372
Ожидаемые выходные переменные..372

Реализация модулей на Python..373
Анализ аргументов...375
Доступ к параметрам..375
Импортирование вспомогательного класса AnsibleModule...............................376
Свойства аргументов..376
AnsibleModule: параметры метода инициализатора...379
Возврат признака успешного завершения или неудачи....................................383
Вызов внешних команд..383
Режим проверки (пробный прогон)...384

Документирование модуля...385
Отладка модуля..387
Создание модуля на Bash..388
Альтернативное местоположение интерпретатора Bash.............................390
Заключение..391

Глава 20. Ускорение работы Ansible..392
Мультиплексирование SSH и ControlPersist..392

Включение мультиплексирования SSH вручную..393
Параметры мультиплексирования SSH в Ansible...395

Еще о настройке SSH...396
Рекомендации по выбору алгоритмов..396

Конвейерный режим...398
Включение конвейерного режима...398
Настройка хостов для поддержки конвейерного режима..................................399

14    Оглавление

Mitogen для Ansible..401
Кеширование фактов...401

Кеширование фактов в файлах JSON...403
Кеширование фактов в Redis..403
Кеширование фактов в Memcached..404

Параллелизм..405
Асинхронное выполнение задач с помощью async......................................406
Заключение..407

Глава 21. Сети и безопасность..408
Управление сетевыми устройствами...408

Список поддерживаемых производителей сетевого оборудования.................409
Ansible Connection для автоматизации управления сетевыми

устройствами..409
Привилегированный режим...410
Реестр сетевых устройств...411
Примеры использования автоматизации управления сетевыми

устройствами..412
Безопасность..412

Соблюдение требований соответствия..413
Защищено, но не безопасно...414
Теневые ИТ-ресурсы...418
Солнечные ИТ-ресурсы...418
Нулевое доверие..419

Заключение..420

Глава 22. CI/CD и Ansible..421
Непрерывная интеграция...421

Элементы системы непрерывной интеграции...422
Jenkins и Ansible..428

Обкатка...434
Плагин Ansible...435
Плагин Ansible Tower...436
Заключение..438

Глава 23. Ansible Automation Platform..439
Модели подписки..442

Пробная версия Ansible Automation Platform..443
Какие задачи решает Ansible Automation Platform.......................................444

Управление доступом...444
Проекты..445

Управление инвентаризацией...446
Запуск заданий из шаблонов..447

RESTful API...449
AWX.AWX..450

Установка...451
Создание организации...452

Создание реестра...453
Запуск сценария с помощью шаблона задания..454

Оглавление    15

Запуск Ansible в контейнерах...455
Создание сред выполнения..455

Заключение..457

Глава 24. Практические рекомендации..458
Простота, модульность и сочетаемость...458
Организуйте контент..459
Отделяйте реестры от проектов...459
Отделяйте роли и коллекции..459
Сценарии..460
Оформляйте код..460
Снабжайте тегами и тестируйте все, что только возможно.........................461
Описывайте желаемое состояние...461
Доставляйте непрерывно..461
Обеспечивайте безопасность...461
Контролируйте развертывание..462
Оценивайте эффективность...462
Контрольные показатели..463
Заключительные слова..463

Библиография...465

Об авторах...467

Об изображении на обложке..468

Предметный указатель..469

Предисловие
к третьему изданию

Со времени публикации второго издания этой книги в 2017 году многое
изменилось в мире Ansible и Python, включая выход нескольких новых
версий. Немало изменений произошло и за пределами проекта: напри-
мер, Red Hat, компания-основательница проекта Ansible, была куплена
корпорацией IBM. Однако это никак не повлияло не проект Ansible: он
все так же продолжает развиваться и привлекать новых пользователей.
Развитие облачных и контейнерных технологий тоже значительно по-
влияло на общий ландшафт.

Мы внесли множество изменений в это издание. Наиболее сущест
венное – добавление шести новых глав, охватывающих контейнеры,
Molecule, коллекции Ansible, создание образов, поддержку облачной ин-
фраструктуры и CI/CD. Мы также обновили и дополнили другие главы,
уделив больше внимания передовым приемам разработки программ-
ного обеспечения и фреймворкам тестирования, помогающим прове-
рить код и придать дополнительную уверенность в нем. Мы обновили
все примеры кода для совместимости с последней версией Ansible, а
также все сведения, что связаны с Python. Мы постарались отразить все
важные изменения, произошедшие в период между 2017 и 2022 годами.
Мы могли бы продолжать и дальше, но не будем этого делать, потому
что вы сами, погрузившись в книгу, сможете увидеть, насколько далеко
продвинулся Ansible.

Обозначения и соглашения,
принятые в этой книге
В книге действуют следующие типографские соглашения.

Курсив
		 Используется для обозначения новых терминов, имен файлов и их

расширений.

Моноширинный шрифт

		 Используется для оформления листингов программ, а также в
обычном тексте для обозначения элементов программы, таких
как имена переменных или функций, баз данных, типов данных,
переменных окружения, инструкций и ключевых слов.

Предисловие к третьему изданию     17

Моноширинный полужирный шрифт

		 Используется для выделения команд и другого текста, который
должен быть набран самим пользователем.

Моноширинный курсив

		 Используется для выделения текста, который нужно заменить
данными пользователя или значениями, определяемыми кон-
текстом.

Так обозначаются примечания общего характера.

Так обозначаются предупреждения и предостережения.

Скачивание исходного кода примеров
Скачать файлы с дополнительной информацией для книг издательства
«ДМК Пресс» можно на сайте www.dmkpress.com или www.дмк.рф на странице с
описанием соответствующей книги.

Мы высоко ценим, хотя и не требуем, ссылки на наши издания. В ссыл-
ке обычно указываются имя автора, название книги, издательство и
ISBN, например: «Мейер Б., Хохштейн Л., Мозер Р. Запускаем Ansible. М.:
O'Reilly; ДМК Пресс, 2023. Copyright © 2023 O'Reilly Media, Inc., 978-1-
098-10915-8 (англ.), 978-5-97060-513-4 (рус.)».

Если вы полагаете, что планируемое использование кода выходит за
рамки изложенной выше лицензии, пожалуйста, обратитесь к нам по
адресу dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры, для того чтобы удостовериться
в качестве наших текстов, ошибки все равно случаются. Если вы най-
дете ошибку в одной из наших книг – возможно, ошибку в тексте или в
коде, – мы будем очень благодарны, если вы сообщите нам о ней. Сделав
это, вы избавите других читателей от расстройств и поможете нам улуч-
шить последующие версии этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о
них главному редактору по адресу dmkpress@gmail.com, и мы исправим это
в следующих тиражах.

http://www.dmkpress.com
http://www.дмк.рф
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com

18    Предисловие к третьему изданию

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы ду
маете об этой книге – что понравилось или, может быть, не понрави-
лось. Отзывы важны для нас, чтобы выпускать книги, которые будут для
вас максимально полезны.

Вы можете написать отзыв прямо на нашем сайте www.dmkpress.com, зай
дя на страницу книги, и оставить комментарий в разделе «Отзывы и
рецензии». Также можно послать письмо главному редактору по адресу
dmkpress@gmail.com, при этом напишите название книги в теме письма.

Если есть тема, в которой вы квалифицированы, и вы заинтересованы
в написании новой книги, заполните форму на нашем сайте по адресу
http://dmkpress.com/authors/publish_book/ или напишите в издательство по адресу
dmkpress@gmail.com.

Благодарности
От Лорин
Мои благодарности Яну-Пит Менсу (Jan-Piet Mens), Мэтту Джейнсу

(Matt Jaynes) и Джону Джарвису (John Jarvis) за отзывы в процессе на-
писания книги. Спасибо Айзаку Салдана (Isaac Saldana) и Майку Рова-
ну (Mike Rowan) из SendGrid за поддержку этого начинания. Благода-
рю Майкла ДеХаана (Michael DeHaan) за создание Ansible и поддержку
сообщества, которое разрослось вокруг продукта, а также за отзывы о
книге, включая объяснения, почему было выбрано название Ansible.
Спасибо моему редактору Брайану Андерсону (Brian Anderson) за его
безграничное терпение в работе со мной.

Спасибо маме и папе за их неизменную поддержку; моему брату Эри-
ку (Eric), настоящему писателю в нашей семье; двум моим сыновьям
Бенджамину (Benjamin) и Джулиану (Julian). И наконец, спасибо моей
жене Стейси (Stacy) за все.

От Рене
Спасибо моей семье, моей жене Симоне (Simone) за любовь и под-

держку, моим трем деткам, Джил (Gil), Сарине (Sarina) и Лиан (Léanne),
за свет и радость, что они привнесли в мою жизнь; спасибо всем, кто
внес свой вклад в развитие Ansible, спасибо вам за ваш труд; и особое
спасибо Маттиасу Блейзеру (Matthias Blaser), познакомившему меня с
Ansible.

http://www.dmkpress.com
mailto:dmkpress@gmail.com
http://dmkpress.com/authors/publish_book/
mailto:dmkpress@gmail.com

Предисловие к третьему изданию     19

От Баса
Спасибо Хенку де Йонгу (Henk de Jongh), открывшему мне двери в

издательство O'Reilly в начале девяностых. Спасибо Джорди Клемен-
ту (Jordi Clement), познакомившему меня с Ansible. Спасибо всем, кто
внес свой вклад в развитие Ansible, спасибо вам за ваш труд. Спаси-
бо всем потрясающим командам, в которых я формировался и рос как
специалист: Antraciet, Integration and Engineering at IMC, iWelcome,
CD@GS, Vendora, CDaaS, Spitfire, Colibri, Wilbur, Duck Tape, Purple, ICC.
Спасибо Фрэнку Безему (Frank Bezema) и Вернеру Дейкерману (Werner
Dijkerman). Спасибо Джири Хугланду (Jiri Hoogland) и Vola Dynamics за
поддержку развития свободного программного обеспечения. Большое
спасибо Тону Керстену (Ton Kersten) и Кериму Сатирли (Kerim Satirli)!
Отдельное спасибо Яну-Пит Менсу (Jan-Piet Mens), Марику Ветте (Marek
Vette) и Джону Каннифу (John Cunniff) за отзывы! Спасибо Серджу ван
Джиндерахтеру (Serge van Ginderachter), Люку Мерфи (Luke Murphy), Ро-
берту де Боку (Robert de Bock), Винсенту ван дер Кассену (Vincent van der
Kussen), Дагу Вирсу (Dag Wieers), Арнабу Синху (Arnab Sinha), Ананду
Буддефу (Anand Buddhef) и все остальным участникам встреч на Ansible
Benelux Meetup: без них я не смог бы стать одним из авторов этой кни-
ги. Спасибо Саре Грей (Sarah Grey) за редактирование этой книги. И спа-
сибо моей семье за любовь и поддержку.

Глава 1
Введение

Сейчас интересное время для работы в ИТ-индустрии. Мы не постав-
ляем нашим клиентам программное обеспечение, установив его на
одну-единственную машину и совершая дежурные звонки раз в день.
Вместо этого мы медленно превращаемся в облачных инженеров.

Сейчас мы развертываем программные приложения, связывая воеди-
но службы, которые работают в распределенной компьютерной сети и
взаимодействуют по разным сетевым протоколам. Типичное приложе-
ние может включать веб-серверы, серверы приложений, систему кеши-
рования данных в оперативной памяти, очереди задач, очереди сообще-
ний, базы данных SQL, NoSQL-хранилища и балансировщики нагрузки.

Мы также должны убедиться в наличии достаточного количества ре-
сурсов, и в случае ошибок в системе (а они будут случаться) мы эле-
гантно выйдем из ситуации. Также имеются второстепенные службы,
которые нужно разворачивать и поддерживать, такие как служба жур-
налирования, мониторинга и анализа. Имеются и внешние службы, с
которыми нужно устанавливать взаимодействие, например с интер-
фейсами «инфраструктура как сервис» (Infrastructure-as-a-Service, IaaS)
для управления экземплярами виртуальных машин1.

Мы можем связать эти службы вручную: запустить нужные серверы,
зайти на каждый из них, установить пакеты приложений, отредакти-
ровать конфигурационные файлы и т. д. Но это серьезный труд. Такой
процесс требует много времени, способствует появлению множества
ошибок и просто утомляет, особенно в третий или четвертый раз. А
работа вручную над более сложными задачами, как, например, уста-
новка облака OpenStack для вашего приложения, – так и просто сумас-
шествие. Есть способ лучше.

Если вы читаете эту книгу, значит, уже загорелись идеей управления
конфигурациями и теперь рассматриваете Ansible как средство управ-
1	 Рекомендую превосходные книги Томаса А. Лимонцелли (Thomas A. Limoncelli), Страта Р. Ча-

лупа (Strata R. Chalup) и Кристины Дж. Хоган (Christina J. Hogan) «The Practice of Cloud System
Administration», тома 1 и 2 (Addison-Wesley), и книгу Мартина Клеппмана (Martin Kleppman)
«Designing Data-Intensive Applications» (O'Reilly).

Примечание о версиях    21

ления. Кем бы вы ни были, разработчиком, развертывающим свой
код в промышленном окружении, или системным администратором,
ищущим лучшие средства автоматизации, я думаю, вы найдете в лице
Ansible превосходное решение ваших проблем.

Примечание о версиях
Все примеры кода в этой книге были протестированы в версии
Ansible 2.9.0, которая на момент написания книги являлась самой све-
жей. Ansible Tower включает версию 2.9.27 в последнем выпуске. Версия
Ansible 2.8 завершила свой жизненный путь выпуском 2.8.20 в апреле
2021 года.

Многие годы сообщество Ansible активно разрабатывало новые роли
и модули, в результате чего на свет появились тысячи модулей и более
20 000 ролей. Сложности, неизбежно возникающие при управлении та-
кими масштабными проектами, привели создателей к необходимости
реорганизовать Ansible и разделить его на три части:

•	 компоненты ядра, созданные командой Ansible;
•	 сертифицированные разработки, созданные бизнес-партнерами

Red Hat;
•	 разработки сообщества, созданные тысячами энтузиастов по все-

му миру.

Ansible 2.9 имеет массу встроенных возможностей, но последующие
версии будут более модульными. Эта новая организация проекта упро-
щает управление ими.

Примеры, представленные в этой книге, должны работать в разных
версиях Ansible, но вообще смена версии предполагает тестирование, о
чем мы поговорим в главе 14.

Откуда взялось название «Ansible»?
Название заимствовано из области научной фантастики.
Ansible – это устройство связи, способное передавать ин-
формацию быстрее скорости света. Писатель Урсула Ле Гуин
впервые представила эту идею в своем романе «Планета
Роканнона», а остальные писатели-фантасты подхватили ее.
Если быть более точным, Майкл ДеХаан, сооснователь проек-
та, позаимствовал название Ansible из книги Орсона Скотта
Карда «Игра Эндера». В этой книге ansible использовался
для одновременного контроля большого числа кораблей,
удаленных на огромные расстояния. Подумайте об этом как
о метафоре контроля удаленных серверов.

22    Глава 1. Введение

Ansible: область применения
Ansible часто описывают как инструмент управления конфигурациями,
и обычно он упоминается в том же контексте, что и Chef, Puppet и Salt.
Когда мы говорим об управлении конфигурациями, то часто подразуме-
ваем описание состояния серверов в некотором виде, а затем приме-
нение специальных средств для приведения серверов в это состояние:
установку необходимых пакетов приложений, копирование конфигура-
ционных файлов с определенными разрешениями в файловой системе,
запуск необходимых служб и т. д. Подобно другим средствам управления,
Ansible предоставляет предметно-ориентированный язык (Domain Specific
Language, DSL), который используется для описания состояний серверов.

Эти инструменты также можно использовать для развертывания
программного обеспечения. Под развертыванием мы часто подразу-
меваем процесс получения двоичного кода из исходного (если необ-
ходимо), копирования необходимых файлов на сервер(ы), добавление
конфигурационных свойств и переменных окружения и запуск служб
в определенном порядке. Capistrano и Fabric – два примера инструмен-
тов с открытым кодом для развертывания приложений. Ansible тоже яв-
ляется превосходным инструментом как для развертывания, так и для
управления конфигурациями программного обеспечения. Использова-
ние единой системы управления конфигурациями и развертыванием
значительно упрощает жизнь системным администраторам.

Некоторые специалисты отмечают необходимость согласования раз-
вертывания, когда в процесс вовлечено несколько удаленных серверов и
операции должны осуществляться в определенном порядке. Например,
базу данных нужно установить до установки веб-серверов или выво-
дить веб-серверы из-под управления балансировщика нагрузки только
по одному, чтобы система не прекращала работу во время обновления.
Система Ansible хороша и в этом, поскольку изначально создавалась для
проведения манипуляций сразу на нескольких серверах. Ansible имеет
удивительно простую модель управления порядком действий.

Наконец, вы услышите, как люди говорят о подготовке и наполнении
(provisioning) новых серверов. В контексте облачных услуг, таких как
Amazon EC2, под подготовкой и наполнением подразумевается развер-
тывание новых экземпляров виртуальной машины или облачных служб
«программное обеспечение как услуга» (Software as a Service, SaaS).
Ansible охватывает и эту область, предоставляя несколько модулей
поддержки облаков, включая EC2, Azure1, Digital Ocean, Google Compute
Engine, Linode и Rackspace2, а также любые облака, поддерживающие
OpenStack API.
1	 Да, Azure поддерживает серверы на Linux.
2	 Например, смотрите презентацию Джесса Китинга (Jesse Keating) «Using Ansible at Scale to

Manage a Public Cloud» (https://oreil.ly/djLsk), ранее работавшего в Rackspace.

https://oreil.ly/djLsk

Как работает Ansible    23

Несколько сбивает с толку использование термина провайдер
(provisioner) в документации к утилите Vagrant, которую мы
обсудим далее в этой главе, в отношении системы управле-
ния конфигурациями. Так, Vagrant называет Ansible своего
рода провайдером там, где, как мне кажется, провайдером
является сам Vagrant, поскольку именно он отвечает за за-
пуск виртуальных машин.

Как работает Ansible
На рис. 1.1 показан простой пример использования Ansible. Пользова-
тель, которого мы будем звать Алиса, использует Ansible для настройки
трех веб-серверов NGINX, действующих под управлением Ubuntu. Она
написала для Ansible сценарий webservers.yml. В терминологии Ansible
сценарии называются playbook. Сценарий описывает, какие хосты (в
Ansible они называются удаленными серверами) подлежат настройке
и упорядоченный список задач, которые должны быть выполнены на
этих хостах. В этом примере хосты носят имена web1, web2 и web3, и
для настройки каждого из них требуется выполнить следующие задачи:

•	 установить Nginx;
•	 сгенерировать конфигурационные файлы для Nginx;
•	 скопировать сертификат безопасности;
•	 запустить Nginx.

Рис. 1.1. Ansible выполняет сценарий настройки трех веб-серверов

Алиса

24    Глава 1. Введение

В следующей главе мы обсудим, что в действительности входит в этот
сценарий. Алиса запускает сценарий командой ansible-playbook. В приме-
ре сценарий называется webservers.yml и запускается вводом команды
в терминале:

$ ansible-playbook webservers.yml

Ansible устанавливает параллельные SSH-соединения с хостами web1,
web2 и web3 и выполняет первую задачу из списка на всех хостах од-
новременно. В этом примере первая задача – установка пакета NGINX,
которая в сценарии выглядит так:

- name: Install nginx
 package:
 name: nginx

Выполняя ее, Ansible проделает следующие действия.

1.	 Сгенерирует сценарий на языке Python, который установит пакет
NGINX.

2.	 Скопирует его на хосты web1, web2 и web3.
3.	 Запустит на хостах web1, web2 и web3.
4.	 Дождется, пока сценарий завершится на всех хостах.

Затем Ansible перейдет к следующей задаче в списке и повторит эти
же четыре шага.

Важно отметить, что:

1)	 каждая задача выполняется на всех хостах одновременно;
2)	 Ansible ожидает завершения задачи на всех хостах, прежде чем

приступить к выполнению следующей;
3)	 задачи выполняются в установленном вами порядке.

Какие преимущества дает Ansible?
Существует несколько систем управления конфигурациями с откры-
тым исходным кодом, так почему мы выбираем Ansible? Ниже перечис-
ляется 21 причина, подталкивающая нас к этому выбору. Но основными
являются простота, широта возможностей и защищенность.

Простота
Разработчики стремились максимально упростить процесс установ-

ки и освоение Ansible.

Простота синтаксиса
Сценарии Ansible определяются в файлах формата YAML с исполь-

зованием синтаксиса шаблонов Jinja2. Напомним, что в терминоло-

Какие преимущества дает Ansible?    25

гии Ansible сценарии управления конфигурацией называются playbook
(сценарий, пьеса). Фактически синтаксис сценариев Ansible основан на
YAML, языке описания данных, который создавался специально, чтобы
легко восприниматься человеком. В некотором роде YAML для JSON – то
же, что Markdown для HTML.

Простота аудита
Сценарии Ansible легко поддаются исследованию – например, можно

легко получить список всех действий и вовлеченных хостов. Для выпол-
нения пробных прогонов мы часто используем команду ansible-playbook
--check. Встроенная поддержка журналирования позволяет увидеть, кто,
что и где делал. Механизм журналирования реализован как подключае-
мый модуль, а созданные им журналы легко получить с помощью сбор-
щиков журналов.

Практически ничего не нужно устанавливать на удаленных
хостах
Для управления серверами с помощью Ansible на серверах Linux долж-

на быть установлена поддержка SSH и Python, а на серверах Windows
должен быть включен WinRM. В Windows Ansible использует PowerShell
вместо Python, что избавляет от необходимости предварительно уста-
навливать на хосте какого-либо агента или любое другое программное
обеспечение.

На управляющей машине (той, что используется для управления уда-
ленными машинами) должен быть установлен Python версии 3.8 или
выше. В зависимости от ресурсов, которыми требуется управлять с по-
мощью Ansible, может потребоваться установить дополнительные сто-
ронние библиотеки. Загляните в документацию, чтобы узнать, имеются
ли у модуля особые требования.

Возможность масштабирования вниз
Да, Ansible можно использовать для управления сотнями и даже ты-

сячами узлов. Но что нас особенно зацепило, так это его масштабируе-
мость вниз. Ansible можно запустить на очень скромном оборудовании,
таком как Raspberry Pi или старом ПК, и даже использовать для управ-
ления единственным узлом – нужно лишь написать один сценарий.
Ansible подтверждает принцип Алана Кея: «Простое должно оставаться
простым, а сложное – возможным».

Простота распространения
Мы не думаем, что вам понадобится повторно использовать сценарии

Ansible в разных контекстах. В главе 7 мы обсудим роли, предлагающие
возможность организации сценариев, и Ansible Galaxy, онлайн-репози-

26    Глава 1. Введение

торий для хранения этих ролей.
Основной единицей повторного использования в сообществе Ansi-

ble в настоящее время является коллекция. Вы можете упаковать свои
модули, плагины, библиотеки, роли и даже сборники игр в коллекцию
и поделиться ею с другими через Ansible Galaxy. Также можно органи-
зовать распространение внутри организации с помощью инструмента
Automation Hub, входящего в состав Ansible Tower. Роли могут исполь-
зоваться совместно как отдельные репозитории.

На практике, однако, каждая организация настраивает свои серверы
немного не так, как другие, поэтому лучше писать свои сборники сце-
нариев для своей организации, а не пытаться повторно использовать
те, что находятся в общем доступе. Мы считаем, что основная ценность
изучения чужих схем заключается в возможности увидеть, как все ра-
ботает, если только вы не работаете с конкретным продуктом, произво-
дитель которого является сертифицированным партнером или членом
сообщества Ansible.

Простота абстракций
Ansible работает с простыми абстракциями системных ресурсов, таких

как файлы, каталоги, пользователи, группы, службы, пакеты и веб-сер-
висы.

Для сравнения давайте посмотрим, как настроить каталог в команд-
ной оболочке. Для этого используются три команды:

mkdir -p /etc/skel/.ssh
chown root:root /etc/skel/.ssh
chmod go-wrx /etc/skel/.ssh

Ansible, в свою очередь, предлагает абстракцию – модуль file, с по-
мощью которого определяются параметры желаемого состояния. Сле-
дующее единственное действие дает тот же эффект, что и три команды
выше:

- name: Ensure .ssh directory in user skeleton
 file:
 path: /etc/skel/.ssh
 mode: '0700'
 owner: root
 group: root
 state: directory

Этот слой абстракции позволяет использовать одни и те же сценарии
для управления конфигурациями серверов с Linux. Например, вместо
использования конкретного диспетчера пакетов, такого как dnf, yum или
apt, Ansible предлагает абстракцию «пакет» (просто имейте в виду, что

Какие преимущества дает Ansible?    27

имена пакетов могут отличаться). Но при желании можно также ис-
пользовать системные абстракции.

Если вы действительно этого хотите, то можете написать свои сце-
нарии Ansible для выполнения различных действий в разных операци-
онных системах на удаленных серверах. Но Бас, один из авторов этой
книги, старается избегать этого по возможности, предпочитая писать
сценарии для реально используемых систем.

Выполнение задач сверху вниз
В книгах по управлению конфигурациями часто упоминается идея

конвергенции (сходимости), или последовательного приведения к конечно-
му состоянию, которая нередко ассоциируется с именем Марка Бургесса
(Mark Burgess) и его системой управления конфигурациями CFEngine.
Если система управления конфигурациями конвергентна, то она может
многократно выполнять управляющие воздействия, с каждым разом
приводя сервер все ближе к желаемому состоянию.

Идея конвергенции неприменима к Ansible из-за отсутствия понятия
многоэтапных воздействий на конфигурацию серверов. Модули Ansible
устроены так, что единственный запуск сценария Ansible сразу приво-
дит каждый сервер в желаемое состояние.

Широта возможностей
Ansible помогает значительно повысить производительность в не-

скольких областях управления системами. Абстракции высокого уров-
ня, предоставляемые Ansible (например, роли), дают возможность
устанавливать и настраивать программное обеспечение быстрее и по-
тенциально безопаснее.

Встроенные модули
Ansible можно использовать для выполнения произвольных команд

оболочки на удаленных серверах, но по-настоящему сильной его сторо-
ной является набор встроенных модулей. Модули необходимы для вы-
полнения таких задач, как установка пакетов приложений, перезапуск
службы или копирование конфигурационных файлов.

Как мы увидим позже, модули Ansible несут декларативную функцию
и используются для описания требуемого состояния серверов. Напри-
мер, вы могли бы вызвать модуль user, чтобы убедиться в существова-
нии учетной записи deploy в группе web:

- name: Ensure deploy user exists
 user:
 name: deploy
 group: web

28    Глава 1. Введение

Использование технологии принудительной настройки
Некоторые системы управления конфигурациями, использующие

агентов, такие как Chef и Puppet, по умолчанию основаны на техноло-
гии добровольной настройки. Агенты, установленные на серверах, пери-
одически подключаются к центральной службе и читают информацию
о конфигурации. Управление изменениями конфигурации серверов в
этом случае выглядит так:

4)	 вы: вносите изменения в сценарий управления конфигурациями,
5)	 вы: передаете изменения центральной службе,
6)	 агент на сервере: периодически включается по таймеру,
7)	 агент на сервере: подключается к центральной службе,
8)	 агент на сервере: читает новые сценарии управления конфигу-

рациями,
9)	 агент на сервере: запускает полученные сценарии локально, об-

новляя состояние сервера.

Ansible, напротив, по умолчанию использует технологию принуди-
тельной настройки. Внесение изменений выглядит так:

1)	 вы: вносите изменения в сценарий,
2)	 вы: запускаете новый сценарий,
3)	 Ansible: подключается к серверам и запускает модули, обновляя

состояние серверов.

Как только вы запустите команду ansible-playbook, Ansible подключится
к удаленным серверам и выполнит всю работу; это снижает риск выхода
из строя случайных серверов, когда запланированные на них задачи не
могут успешно изменить их состояние. Принудительная настройка дает
важное преимущество – вы контролируете время обновления серверов.
Вам не приходится ждать. Каждое действие в сценарии может быть на-
целено на один или группу серверов. Вы можете выполнять больше опе-
раций автоматически, не выполняя вход на серверы вручную.

Многоуровневая оркестрация
Технология принудительной настройки позволяет также реализовать

с помощью Ansible многоуровневую оркестрацию – управление отдель-
ными группами компьютеров для выполнения различных операций,
таких как обновление ПО. Вы можете организовать управление систе-
мами мониторинга, балансировщиками нагрузки, базами данных и
веб-серверами с помощью конкретных инструкций и обеспечить их со-
гласованную работу. Это очень сложно сделать с системой, основанной
на технологии добровольной настройки.

Какие преимущества дает Ansible?    29

Отсутствие ведущего узла
Сторонники добровольной настройки утверждают, что их подход

лучше масштабируется на большое число серверов и удобнее, когда но-
вые серверы могут появиться в любой момент. Однако централизован-
ная система управления конфигурацией может испытывать значитель-
ную нагрузку, когда тысячи агентов одновременно попытаются извлечь
свою конфигурацию, особенно если им требуется выполнить несколько
циклов для конвергенции. Для сравнения: Ansible официально поддер-
живает особый режим, называемый ansible-pull, в котором сценарии
извлекаются из репозитория, такого как GitHub. Ansible не нуждается
в ведущем узле, но при желании вы можете использовать централизо-
ванную систему для запуска сценариев.

Поддержка плагинов
Значительная часть функциональности Ansible реализована в виде

подключаемых модулей – плагинов, из которых наиболее часто ис-
пользуются плагины Lookup и Filter. Плагины расширяют базовые воз-
можности Ansible логикой и функциями, доступными для всех модулей.
Модули вводят в язык Ansible новые «глаголы». Вы тоже можете писать
свои плагины (глава 10) и модули (глава 12) на Python .

Ansible можно интегрировать с другими продуктами. Примерами
успешной интеграции могут служить Kubernetes и Ansible Tower. Ansible
Runner – это «инструмент и библиотека для Python, помогающая ор-
ганизовать взаимодействие с Ansible напрямую или в составе другой
системы, например через интерфейс образа контейнера, как автоном-
ный инструмент или как модуль на Python, который можно импорти-
ровать»1.

С помощью библиотеки ansible-runner можно запустить сценарий
Ansible из программы на Python:

#!/usr/bin/env python3
import ansible_runner

r = ansible_runner.run(private_data_dir='./playbooks', playbook='playbook.yml')

print("{}: {}".format(r.status, r.rc))
print("Final status:")
print(r.stats)

Поддержка решения широкого круга задач
Модули Ansible предназначены для решения широкого круга задач

системного администрирования. В списке ниже перечислены катего-

1	 Цитата из документации к Ansible Runner (https://oreil.ly/sZwPY).

https://oreil.ly/sZwPY

30    Глава 1. Введение

рии доступных модулей. Эти ссылки ведут в список модулей (https://oreil.
ly/OXel7) в документации:

•	 Cloud (https://oreil.ly/0xeNu);
•	 Files (https://oreil.ly/3cq87);
•	 Monitoring (https://oreil.ly/z6dde);
•	 Source Control (https://oreil.ly/WEMHZ);
•	 Clustering (https://oreil.ly/b31cn);
•	 Identity (https://oreil.ly/39yJA);
•	 Net Tools (https://oreil.ly/Pb137);
•	 Storage (https://oreil.ly/IZBGX);
•	 Commands (https://oreil.ly/wyyJZ);
•	 Infrastructure (https://oreil.ly/XhW90);
•	 Network (https://oreil.ly/UFHZo);
•	 System (https://oreil.ly/mn569);
•	 Crypto (https://oreil.ly/puZGg);
•	 Inventory (https://oreil.ly/zBvdF);
•	 Notification (https://oreil.ly/ulrdH);
•	 Utilities (https://oreil.ly/veSG4);
•	 Database (https://oreil.ly/iEv9l);
•	 Messaging (https://oreil.ly/aTOvP);
•	 Packaging (https://oreil.ly/71GLO);
•	 Windows (https://oreil.ly/c8NwK).

Настоящая масштабируемость
Крупные предприятия успешно используют Ansible для настройки

десятков тысяч узлов и отлично поддерживают окружения, в которых
серверы появляются и исчезают динамически. Организации с сотнями
групп разработчиков программного обеспечения обычно используют
AWX или комбинацию Ansible Tower и Automation Hub для аудита и за-
щиты с контролем доступа на основе ролей.

Вас волнует масштабируемость SSH? Ansible использует мультиплек-
сирование SSH для оптимизации производительности и реальные при-
меры управления тысячами узлов с помощью Ansible (глава 12).

Защищенность
Автоматизация с помощью Ansible помогает повысить защищенность

системы до базовых уровней безопасности и стандартов соответствия.

https://oreil.ly/OXel7
https://oreil.ly/OXel7
https://oreil.ly/0xeNu
https://oreil.ly/3cq87
https://oreil.ly/z6dde
https://oreil.ly/WEMHZ
https://oreil.ly/b31cn
https://oreil.ly/39yJA
https://oreil.ly/Pb137
https://oreil.ly/IZBGX
https://oreil.ly/wyyJZ
https://oreil.ly/XhW90
https://oreil.ly/UFHZo
https://oreil.ly/mn569
https://oreil.ly/puZGg
https://oreil.ly/zBvdF
https://oreil.ly/ulrdH
https://oreil.ly/veSG4
https://oreil.ly/iEv9l
https://oreil.ly/aTOvP
https://oreil.ly/71GLO
https://oreil.ly/c8NwK

Какие преимущества дает Ansible?    31

Самодокументирующийся код
Авторам книги нравится думать о сценариях Ansible как о выпол-

няемой документации. Они сродни файлам README, которые описы-
вают действия, необходимые для развертывания программного обе-
спечения, но, в отличие от них, сценарии всегда содержат актуальные
инструкции, поскольку сами являются выполняемым кодом. Эксперты
могут создавать сценарии, отражающие передовой опыт, а новички –
использовать их как учебники и пребывать в уверенности, что получат
хороший результат.

Воспроизводимость
Если всю свою систему вы настроите с помощью Ansible, то она прой-

дет то, что Стив Трауготт (Steve Traugott) называет «тестированием де-
сятым этажом» (https://oreil.ly/AMf1S): «Могу ли я взять случайную машину,
для которой никогда не выполнялось резервного копирования, выки-
нуть ее из окна десятого этажа и при этом не потерять работу систем-
ного администратора?»

Эквивалентность создаваемых окружений
Ansible поддерживает определенный способ организации контента,

помогающий определить конфигурацию на надлежащем уровне. Вы с
легкостью сможете определить настройки для различных окружений:
разработки, тестирования, обкатки и промышленной эксплуатации.
Окружение обкатки обычно делается максимально похожим на про-
мышленное окружение, чтобы разработчики могли выявить любые
проблемы до того, как изменения попадут в промышленное окружение.

Шифрование переменных
При необходимости хранить конфиденциальные данные, такие как

пароли или токены, можно использовать эффективный инструмент
ansible-vault. Мы используем его для шифрования переменных в Git. Бо-
лее подробно этот вопрос обсуждается в главе 8.

Защищенный транспорт
Ansible просто использует Secure Shell (SSH) для Linux и WinRM для

Windows. Обычно мы защищаем и укрепляем эти широко используе-
мые протоколы управления системами с помощью защищенных на-
строек конфигурации и брандмауэра.

Если вы предпочитаете модель, основанную на приемах доброволь-
ной настройки, то для вас Ansible официально поддерживает особый
режим, называемый ansible-pull. В этой книге не раскрываются особен-
ности этого режима, но вы можете узнать больше об этом из официаль-
ной документации (https://docs.ansible.com/).

https://oreil.ly/AMf1S
https://docs.ansible.com/

32    Глава 1. Введение

Идемпотентность
Модули также являются идемпотентными1. Идемпотентность – заме-

чательное свойство и означает, что сценарий Ansible можно применить
к одному и тому же серверу много раз без всякого ущерба для конфи-
гурации последнего. Давайте рассмотрим пример, когда нам нужно со-
здать пользователя deploy:

- name: Ensure deploy user exists
 user:
 name: deploy
 group: web

Если пользователя deploy не существует, то Ansible создаст его. Если
он существует, то Ansible просто перейдет к следующему шагу. То есть
сценарии Ansible можно запускать на сервере много раз. Это важное
отличие от сценариев командной оболочки, потому что повторный за-
пуск таких сценариев может привести к незапланированным – и хоро-
шо, если безобидным – последствиям2.

Отсутствие демонов
В Ansible нет агента, прослушивающего некоторый порт. Поэтому у

злоумышленников нет цели для атаки на Ansible. (Однако существуют
другие цели для атаки – элементы цепочки доставки программного
обеспечения, такого как библиотеки Python и другие импортируемые
компоненты.)

Связь между Ansible и Ansible, Inc.
Название Ansible относится как к программному обеспече-
нию, так и к компании, управляющей проектом. Майкл Де-
Хаан, создатель программного обеспечения Ansible, является
бывшим техническим директором компании Ansible. Во из-
бежание путаницы хочу уточнить, что для обозначения про-
дукта я использую Ansible, а компании – Ansible, Inc.
Ansible, Inc. проводит обучение и предоставляет консульта-
ционные услуги по Ansible, а также собственной веб-систе-
ме управления Ansible Tower, о которой рассказывается в
главе 19. В октябре 2015 года Red Hat купила Ansible Inc., а
в 2019 году IBM купила Red Hat.

1	 Идемпотéнтность – свойство объекта или операции при повторном применении операции
к объекту давать тот же результат, что и при одинарном. – Прим. перев.

2	 Если вам интересно, что думает автор Ansible об идемпотентности и конвергенции, прочтите
публикацию Майкла ДеХаана «Idempotence, convergence, and other silly fancy words we use too
often» («Идемпотентность, конвергенция и другие причудливые слова, которые мы используем
слишком часто») на странице группы Ansible Project (https://oreil.ly/pNSNr).

https://oreil.ly/pNSNr

Что я должен знать?    33

Не слишком ли проста система Ansible?
В период работы над книгой редактор сказал Лорин, что «некоторые
специалисты, использующие систему управления конфигурациями
XYZ, называют Ansible циклом for по сценариям, запускаемым через
SSH». Планируя переход с другой системы управления конфигурациями
на Ansible, действительно могут возникнуть сомнения в его эффектив-
ности.

Однако, как скоро будет показано, Ansible имеет гораздо более ши-
рокие возможности, чем сценарии командной оболочки. Как уже упо-
миналось, модули Ansible гарантируют идемпотентность, Ansible имеет
превосходную поддержку шаблонов и переменных с разными областя-
ми видимости. Любой, кто считает, что суть Ansible заключается в ра-
боте со сценариями командной оболочки, никогда не занимался под-
держкой нетривиальных программ на языке оболочки. Если есть выбор,
я предпочту Ansible сценариям командной оболочки.

Что я должен знать?
Для эффективной работы с Ansible необходимо знать основы адми-
нистрирования операционной системы Unix/Linux. Ansible позволяет
автоматизировать процессы, но не является волшебным инструмен-
том, способным выполнять операции, которые вы не знаете, как вы-
полнить.

Читатели данной книги должны быть знакомы по крайней мере с од-
ним из дистрибутивов Linux (Ubuntu, RHEL/CentOS, SUSE и пр.) и пони-
мать, как:

•	 подключиться к удаленной машине через SSH;
•	 работать в командной строке Bash (каналы и перенаправление);
•	 устанавливать пакеты приложений;
•	 использовать команду sudo;
•	 проверять и устанавливать разрешения для файлов;
•	 запускать и останавливать службы;
•	 устанавливать переменные окружения;
•	 писать сценарии (на любом языке).

Если все это вам известно, то можете смело приступать к работе с
Ansible.

Я не предполагаю, что вы знаете какой-то определенный язык про-
граммирования. Например, вам не нужно знать Python, если вы не со-
бираетесь самостоятельно писать модули.

34    Глава 1. Введение

О чем не рассказывается в этой книге
Эта книга не является исчерпывающим руководством по работе с
Ansible. Она позволяет подготовиться к использованию Ansible в крат-
чайшие сроки и дает описание некоторых задач, которые недостаточно
полно описываются в официальной документации.

Книга не описывает использования официальных модулей Ansible.
Их более 3500, и они достаточно хорошо представлены в официальной
документации. Для просмотра справочной документации и списка мо-
дулей, упоминавшихся выше, можно использовать инструмент команд-
ной строки ansible-doc.

Глава 8 охватывает только основные возможности механизма шабло-
нов Jinja2, главным образом потому, что авторы используют только са-
мые основные функции Jinja2 при работе с Ansible. Для более глубоко-
го знакомства Jinja2 обращайтесь к официальной документации Jinja2
(https://oreil.ly/LAXa7).

Книга не дает детального описания некоторых возможностей Ansible,
используемых в основном для поддержки ранних версий Linux.

Наконец, некоторые особенности Ansible мы не будем рассматри-
вать, просто чтобы не увеличивать и без того немалый объем книги.
Для знакомства с этими особенностями обращайтесь к официальной
документации (https://docs.ansible.com/).

Поехали!
В этой вводной главе мы в общих чертах рассмотрели основные понятия
Ansible, в том числе особенности взаимодействий с удаленными серве-
рами и отличия от других инструментов управления конфигурациями.
В следующих главах обсуждается практическое использование Ansible.

https://oreil.ly/LAXa7
https://docs.ansible.com/

Глава 2
Установка и настройка

Система Ansible написана на Python и предназначена для использова-
ния в операционных системах Linux/macOS/BSD. С другой стороны, она
может управлять конфигурацией всех типов операционных систем и,
как правило, не требует ничего устанавливать в целевые системы при
условии, что в системах Linux/macOS/BSD установлен Python, а в Win-
dows установлен PowerShell. Обычно многие устанавливают Ansible на
свою рабочую станцию, на которой должен быть установлен Python 3.8.

Установка Ansible
В настоящее время все основные дистрибутивы Linux включают па-
кет Ansible. Поэтому, использующие Linux смогут установить Ansible,
используя встроенный диспетчер пакетов. Но имейте в виду, что это
может быть не самая последняя версия Ansible. Если вы используете
macOS, то я рекомендую использовать для установки Ansible замеча-
тельный диспетчер пакетов Homebrew:

$ brew install ansible

На любом компьютере с Unix/Linux/macOS можно также установить
Ansible с помощью одного из диспетчеров пакетов Python и с его же
помощью добавить инструменты и библиотеки на Python, которые мо-
гут вам пригодиться, при условии, что вы добавите ~/.local/bin в список
путей в переменной окружения PATH. Если вы предпочтете Ansible Tower
или AWX, то установите соответствующую версию ansible-core.

$ pip3 install --user ansible==2.9.27

При установке версии выше 2.10 (например, 5.9.0), pip3 также устано-
вит все стандартные коллекции, следуя принципу «все включено».

36    Глава 2. Установка и настройка

При работе с несколькими проектами удобно установить
Ansible в виртуальное окружение Python (virtualenv). Это из-
бавит вас от конфликтов с системной установкой Python и
от загромождения пользовательского окружения. Используя
модуль Python venv и pip3, можно установить в каждый про-
ект только то, что действительно необходимо:

$ python3 -m venv .venv --prompt A
$ source .venv/bin/activate
(A)

После активации виртуального окружения приглашение
командной оболочки сменится на (A) для напоминания. Вый
ти из виртуального окружения можно командой deactivate.

Возможность запуска Ansible в Windows официально не поддержи-
вается, но вы сможете управлять системами Windows удаленно с по-
мощью Ansible, используя PowerShell поверх WinRM1.

Запустить Ansible на хосте с Windows (т. е. использовать ма-
шину с Windows в роли управляющей машины) все же воз-
можно, но при этом запускать Ansible следует в подсистеме
Windows для Linux (WSL2) . На практике это означает, что вы
будете запускать Ubuntu рядом с Windows на одном компью-
тере. WSL2 – это подсистема, которую можно активировать в
Windows 10 Home Edition (и более поздних версиях). Она не
поддерживается Ansible и поэтому не должна использовать-
ся для управления промышленными системами. Для установ-
ки Ansible в WSL2 выполните следующие команды:

sudo apt-get update
sudo apt-get install python3-pip git libffi-dev
libssl-dev -y
pip3 install --user ansible

Дополнительные зависимости
Плагины и модули Ansible могут потребовать установить дополни-

тельные библиотеки Python. Например, для управления системами
Windows и Docker нужно установить следующие две библиотеки для
Python:

(A) pip3 install pywinrm docker

1	 Чтобы узнать, почему официально не поддерживается возможность запуска Ansible в Windows,
прочитайте статью «Why No Ansible Controller for Windows?» (https://oreil.ly/xrtnD) в блоге Мэтта
Дэвиса (Matt Davis).

https://oreil.ly/xrtnD

Подготовка сервера для экспериментов    37

В некотором смысле виртуальное окружение Python было предше-
ственником контейнеров: оно позволяет изолировать библиотеки и из-
бежать «ада зависимостей».

Запуск Ansible в контейнерах
В комплект Ansible входит ansible-builder – инструмент, помогающий

создать среду выполнения и осуществлять запуск Ansible в контейнере
для автоматизации узкоспециализированных рабочих процессов. Он
основан на структуре каталогов ansible-runner. Это сложная тема, и она
выходит за рамки данной главы. Однако мы вернемся к ней в главе 23 .

Версия Ansible для разработчиков
При наличии желания поэкспериментировать с последними возмож-

ностями Ansible вы можете получить новейшую версию из ветки разра-
ботки на GitHub :

$ python3 -m venv .venv --prompt S
$ source .venv/bin/activate
(S) python3 -m pip install --upgrade pip
(S) pip3 install wheel
(S) git clone https://github.com/ansible/ansible.git --recursive
(S) pip3 install -r ansible/requirements.txt

Однако, используя версию Ansible для разработчиков, вам придется
каждый раз запускать следующие команды, чтобы настроить перемен-
ные окружения, включая переменную PATH, чтобы ваша командная обо-
лочка знала, где находятся программы ansible и ansible-playbook:

(S) cd ./ansible
(S) source ./hacking/env-setup

Подготовка сервера для экспериментов
Для выполнения примеров, приведенных в книге, вам необходимо
иметь SSH-доступ и права пользователя root на сервере Linux. К счас
тью, сегодня легко получить недорогой доступ к виртуальной машине
Linux в общедоступных облачных службах.

Использование Vagrant для подготовки сервера
Если вы предпочитаете не тратиться на облачные услуги, то я предло-

жил бы установить Vagrant – отличный инструмент с открытым исход-
ным кодом для управления виртуальными машинами. C его помощью
можно запустить виртуальную машину с Linux на ноутбуке, которая и
послужит вам сервером для экспериментов.

38    Глава 2. Установка и настройка

Vagrant – отличное окружение для тестирования сценариев Ansible.
Мы часто используем Vagrant при разработке наших собственных сце-
нариев Ansible и поэтому будем использовать его на протяжении всей
книги. Но тестирование сценариев управления конфигурацией не
единственное предназначение Vagrant; изначально этот инструмент
разрабатывался для создания воспроизводимых окружений разработ-
ки. Если вам доводилось присоединяться к новой команде разработчи-
ков программного обеспечения и тратить несколько дней на выясне-
ние того, какое программное обеспечение нужно установить на свой
ноутбук, чтобы запустить версию для разработчиков, то вы наверняка
знаете, насколько болезненным может быть этот процесс. Vagrant соз-
давался для облегчения этой боли. Сценарии Ansible – отличный способ
настроить машину Vagrant, чтобы новички в вашей команде могли при-
ступить к работе в первый же день.

Vagrant требует установки гипервизора, такого как VirtualBox. Ска-
чайте VirtualBox, а затем Vagrant. Vagrant имеет встроенную поддержку
Ansible, которой мы и воспользуемся в этой главе для настройки машин
Vagrant.

Рекомендую создать отдельный каталог для сценариев Ansible и про-
чих файлов. В следующем примере я создал такой каталог с именем
playbooks. Структура каталогов важна для Ansible: если разместить фай-
лы в правильных местах, то мозаика будет складываться из отдельных
кусочков без всяких проблем.

Выполните следующие команды, чтобы создать конфигурационный
файл Vagrant (Vagrantfile) для 64-битого образа виртуальной машины
Ubuntu/Focal и запустить его:

$ mkdir playbooks
$ cd playbooks
$ vagrant init ubuntu/focal64
$ vagrant up

При первом запуске команда vagrant up загрузит файл образа
виртуальной машины. На это может потребоваться некоторое
время в зависимости от качества соединения с интернетом.

В случае успеха вы увидите, как в окне терминала побегут следующие
строки:

$ vagrant up default
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/focal64'...
==> default: Matching MAC address for NAT networking...

Подготовка сервера для экспериментов    39

==> default: Checking if box 'ubuntu/default64' version is up to date...
==> default: Setting the name of the VM: default
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Setting hostname...
==> default: Configuring and enabling network interfaces...
==> default: Mounting shared folders...
 default: /vagrant => C:/Users/basme/ansiblebook/ch02/playbooks

Теперь можно попробовать зайти по SSH на вашу новую виртуальную
машину Ubuntu 20.04, выполнив следующую команду:

$ vagrant ssh

Если все прошло благополучно, то вы увидите приветствие на экране:

Welcome to Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-72-generic x86_64)
 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage
 System information as of Sun Apr 18 14:53:23 UTC 2021
 System load: 0.08 Processes: 118
 Usage of /: 3.2% of 38.71GB Users logged in: 0
 Memory usage: 20% IPv4 address for enp0s3: 10.0.2.15
 Swap usage: 0%

1 update can be installed immediately.
0 of these updates are security updates.
To see these additional updates run: apt list --upgradable

vagrant@ubuntu-focal:~$

Выполнив вход с помощью команды vagrant ssh, вы сможете взаимо-
действовать с командной оболочкой Bash, но Ansible подключается к
виртуальной машине с помощью обычного клиента SSH. Дайте Vagrant
команду вывести конфигурацию SSH:

$ vagrant ssh-config

40    Глава 2. Установка и настройка

Вот как выглядит вывод этой команды на компьютере Баса с Windows:

Host default
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile C:/Users/basme/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LogLevel FATAL

Вот самые важные строки:

HostName 127.0.0.1
 User vagrant
 Port 2222
 IdentityFile C:/Users/basme/.vagrant.d/insecure_private_key

Начиная с версии 1.7, в Vagrant изменился порядок работы
с закрытыми SSH-ключами. Начиная с этой версии, Vagrant
генерирует новый закрытый ключ для каждой машины. Более
ранние версии использовали один и тот же ключ, который по
умолчанию хранился в каталоге $HOME/.vagrant.d/insecure_
private_key. Примеры в этой книге основаны на Vagrant 2.2.

У вас строки должны выглядеть похоже, за исключением места хране-
ния файла идентификации.

Проверьте, сможете ли вы запустить новый SSH-сеанс из командной
строки, используя эту информацию. Команда SSH также правильно ра-
ботает, если ей передать относительный путь при запуске в каталоге
playbooks:

$ ssh vagrant@127.0.0.1 -p 2222 \
 -i .vagrant/machines/default/virtualbox/private_key

Вы должны увидеть приглашение к вводу в Ubuntu. Введите exit, что-
бы завершить SSH-сеанс.

Передача информации о сервере в Ansible
Ansible может управлять только известными ей серверами. Передать

информацию о серверах в Ansible можно в файле реестра (inventory).
Мы обычно создаем каталог inventory, в который сохраняем эту инфор-
мацию.

$ mkdir inventory

Подготовка сервера для экспериментов    41

Каждому серверу должно быть присвоено имя для идентификации в
Ansible. С этой целью можно использовать имя хоста или выбрать дру-
гой псевдоним. С именем также должны определяться дополнитель-
ные параметры подключения. Присвоим нашему серверу псевдоним
testserver.

Создайте в каталоге inventory текстовый файл. Если в роли тестового
сервера вы используете виртуальную машину Vagrant, то дайте файлу
имя vagrant.ini, если вы используете машины Amazon EC2, то назовите
файл ec2.ini. Имейте в виду, что, несмотря на расширение .ini в именах
этих файлов реестра, они не следуют правилам оформления INI-файлов,
определенным в Microsoft. В частности, INI-файлы всегда состоят из пар
ключ/значение, что не всегда верно для файлов реестра.

Файлы .ini будут служить реестром для Ansible. Они определяют ин-
фраструктуру для управления в группах, обозначенных именами в ква-
дратных скобках. Если вы используете Vagrant, то содержимое вашего
файла должно выглядеть как в примере 2.1. Группа [webservers] вклю-
чает один хост: testserver. Здесь можно заметить один из недостатков
использования Vagrant: необходимость передачи в Ansible дополни-
тельных данных – переменных vars, – определяющих параметры под-
ключения к группе. В реальных окружениях эти переменные обычно не
нужны. С другой стороны, если вы используете окружения для обкатки
с разными параметрами безопасности, то реестр – отличное место для
определения этих различий.

Пример 2.1. inventory/vagrant.ini

[webservers]
testserver ansible_port=2222

[webservers:vars]
ansible_host=127.0.0.1
ansible_user=vagrant
ansible_private_key_file=.vagrant/machines/default/virtualbox/private_key

Если предположить, что у вас есть Ubuntu-машина в облаке Amazon
EC2 с именем хоста ec2-203-0-113-120.compute-1.amazonaws.com, то со-
держимое файла реестра будет выглядеть так:

[webservers]
testserver ansible_host=ec2-203-0-113-120.compute- 1.amazonaws.com

[webservers:vars]
ansible_user=ec2-user
ansible_private_key_file=/path/to/keyfile.pem

42    Глава 2. Установка и настройка

Ansible поддерживает программу ssh-agent, поэтому нет не-
обходимости явно указывать файлы SSH-ключей в реестре.
Если вы входите в систему со своим собственным идентифи-
катором пользователя, то вам тоже не придется указывать их.

Чтобы проверить способность Ansible подключиться к серверу, ис-
пользуем утилиту командной строки ansible. Мы будем пользоваться ею
лишь изредка, в основном для решения специфических задач.

Попросим Ansible установить соединение с сервером testserver, ука-
занным в файле реестра vagrant.ini, и вызвать модуль ping:

$ ansible testserver -i inventory/vagrant.ini -m ping

Если на локальном SSH-клиенте включена проверка ключей хоста,
вы увидите нечто похожее на первую попытку Ansible подключиться к
серверу:

The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)' can't be
established.
ED25519 key fingerprint is SHA256:6l2Lg8/EBqMFstGNPqFtLychVkxRxqdvRhvLlv/Tj1E.
Are you sure you want to continue connecting (yes/no)?

Просто введите yes.
В случае успеха появится следующий результат:

testserver | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}

Если Ansible сообщит об ошибке, то добавьте в команду флаг
-vvvv, чтобы получить больше информации об ошибке:

$ ansible testserver -i inventory/vagrant.ini -m ping -vvvv

Мы видим, что команда выполнилась успешно. Часть ответа "changed":
false говорит о том, что выполнение модуля не изменило состояния
сервера. Текст "ping":"pong" является характерной особенностью мо
дуля ping.

Подготовка сервера для экспериментов    43

Модуль ping не производит никаких изменений. Он лишь проверяет
способность Ansible начать SSH-сеанс с сервером и может пригодиться
в начале большого сценария.

Упрощение задачи с помощью файла ansible.cfg
Нам пришлось ввести много текста в файл реестра, чтобы проверить

возможность подключения к тестовому серверу. К счастью, Ansible
поддерживает несколько способов передачи такой информации, и мы
не обязаны группировать ее в одном месте. Сейчас мы воспользуем-
ся одним из таких способов – файлом ansible.cfg – и определим в нем
некоторые настройки по умолчанию, чтобы потом нам не пришлось
набирать так много текста.

Где лучше хранить файл ansible.cfg?
Ansible будет искать файл ansible.cfg в следующих местопо-
ложениях в указанном порядке:

•	 файл, указанный в переменной окружения ANSIBLE_
CONFIG;

•	 ./ansible.cfg (ansible.cfg в текущем каталоге);
•	 ~/.ansible.cfg (.ansible.cfg в вашем домашнем каталоге);
•	 /etc/ansible/ansible.cfg (Linux) или /usr/local/etc/ansible/

ansible.cfg (BSD).
Я обычно храню ansible.cfg в текущем каталоге вместе со
сценариями. Это позволяет хранить его в том же репозито-
рии, где хранятся мои сценарии, а также дает возможность
создавать конфигурационные файлы отдельно для каждого
проекта.

В примере 2.2 показан файл ansible.cfg, определяющий местоположе-
ние файла реестра (inventory) и параметры, влияющие на работу Ansible,
например на форматирование вывода.

Учетная запись для входа и соответствующий закрытый ключ SSH мо-
гут зависеть от используемого реестра, поэтому блок vars с параметра-
ми подключения лучше добавлять в файл реестра, а не в файл ansible.
cfg. Однако добавление имени файла закрытого ключа в файл ansible.cfg
или в файлы реестра сделает конфигурацию менее гибкой и уменьшит
возможность совместного использования вашего проекта несколькими
пользователями. Альтернативное решение – неявное использование
конфигурации SSH.

В нашем примере конфигурации в ansible.cfg проверка SSH-ключей
хоста отключена. Это удобно при работе с Vagrant, потому что иначе по-
требовалось бы вносить изменения в файл ~/.ssh/known_hosts каждый раз,
когда удаляется имеющийся или создается новый Vagrant-сервер. Одна-

44    Глава 2. Установка и настройка

ко отключение проверки ключей для серверов в сети несет определенные
риски.

Пример 2.2. ansible.cfg
[defaults]
inventory = inventory/vagrant.ini
host_key_checking = False
stdout_callback = yaml
callback_enabled = timer

Ansible и система управления версиями
Ansible по умолчанию хранит реестр в файле /etc/ansible/
hosts. Хранение реестра в одном каталоге со сценариями и
другими артефактами дает возможность использовать кон-
кретный реестр для каждого проекта, а не только глобаль-
ный. Но если отделить проект от реестра, то его будет проще
повторно использовать на машинах, принадлежащих другим.
Хотя работа с системами управления версиями не затрагива-
ется в этой книге, я настоятельно рекомендую использовать
для управления сценариями систему, подобную Git. Если вы
разработчик программного обеспечения, то наверняка зна-
комы с системами управления версиями. Если вы системный
администратор и прежде не пользовались ими, тогда это хо-
роший повод начать знакомство.

С настройками по умолчанию можно запускать Ansible без ключа –i
с именем хоста:

$ ansible testserver -m ping

Нам нравится использовать инструмент командной строки ansible для
запуска произвольных команд на удаленных серверах. Произвольные
команды также можно выполнять с помощью модуля command. При запу-
ске модуля необходимо указать аргумент -a с запускаемой командой.

Например, вот как можно проверить время работы сервера с момента
последнего запуска:

$ ansible testserver -m command -a uptime

Результат должен выглядеть примерно так:

testserver | CHANGED | rc=0 >>
 10:37:28 up 2 days, 14:11, 1 user, load average: 0.00, 0.00, 0.00

Модуль command используется настолько часто, что сделан модулем по
умолчанию, т. е. его имя можно опустить в команде:

$ ansible testserver -a uptime

Подготовка сервера для экспериментов    45

Если команда в аргументе -a содержит пробелы, то ее необходимо за-
ключить в кавычки, чтобы командная оболочка передала Ansible всю
строку как единый аргумент. Например, вот как выглядит извлечение
нескольких последних строк из журнала /var/log/dmesg:

$ ansible testserver -a "tail /var/log/dmesg"

Вывод, возвращаемый машиной Vagrant, выглядит примерно так:

testserver | CHANGED | rc=0 >>
[9.940870] kernel: 14:48:17.642147 main VBoxService 6.1.16_Ubuntu r140961
(verbosity: 0) linux.amd64 (Dec 17 2020 22:06:23) release log
 14:48:17.642148 main Log opened 2021-04-18T14:48:17.642143000Z
[9.941331] kernel: 14:48:17.642623 main OS Product: Linux
[9.941419] kernel: 14:48:17.642718 main OS Release: 5.4.0-72-generic
[9.941506] kernel: 14:48:17.642805 main OS Version: #80-Ubuntu SMP Mon Apr 12
17:35:00 UTC 2021
[9.941602] kernel: 14:48:17.642895 main Executable: /usr/sbin/VBoxService
 14:48:17.642896 main Process ID: 751
 14:48:17.642896 main Package type: LINUX_64BITS_GENERIC
 (OSE)
[9.942730] kernel: 14:48:17.644030 main 6.1.16_Ubuntu r140961 started.
Verbose level = 0
[9.943491] kernel: 14:48:17.644783 main vbglR3GuestCtrlDetectPeekGetCancelSupport:
Supported (#1)

Чтобы выполнить команду с привилегиями root, нужно передать па-
раметр –b или --become. В этом случае Ansible выполнит команду от лица
(become) пользователя root. В Unix/Linux для этого обычно используется
такой инструмент, как sudo, который необходимо настроить. В приме-
рах Vagrant в этой книге это было сделано автоматически.

Например, для доступа к /var/log/syslog требуются привилегии root:

$ ansible testserver -b -a "tail /var/log/syslog"
Результат будет выглядеть примерно так:
testserver | CHANGED | rc=0 >>
Apr 23 10:39:41 ubuntu-focal multipathd[471]: sdb: failed to get udev uid:
Invalid argument
Apr 23 10:39:41 ubuntu-focal multipathd[471]: sdb: failed to get sysfs uid: No
data available
Apr 23 10:39:41 ubuntu-focal multipathd[471]: sdb: failed to get sgio uid: No
data available
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: add missing path
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: failed to get udev uid:
Invalid argument
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: failed to get sysfs uid: No
data available
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: failed to get sgio uid: No

46    Глава 2. Установка и настройка

data available
Apr 23 10:39:43 ubuntu-focal systemd[1]: session-95.scope: Succeeded.
Apr 23 10:39:44 ubuntu-focal systemd[1]: Started Session 97 of user vagrant.
Apr 23 10:39:44 ubuntu-focal python3[187384]: ansible-command Invoked with
_raw_params=tail /var/log/syslog warn=True _uses_shell=False stdin_add_newline=True
strip_empty_ends=True argv=None chdir=None executable=None creates=None
removes=None stdin=None

Как видите, Ansible фиксирует свои действия в syslog.
Утилита ansible не ограничивается модулями ping и command: вы можете

использовать любой модуль по желанию. Например, следующей коман-
дой можно установить NGINX в Ubuntu:

$ ansible testserver -b -m package -a name=nginx

Если установить NGINX не удалось, то, возможно, нужно об-
новить список пакетов. Чтобы Ansible выполнила эквивалент
команды apt-get update перед установкой пакета, замените
аргумент name=nginx на name=nginx update_cache=yes.
Перезапустить Nginx можно так:

$ ansible testserver -b -m service -a "name=nginx state=restarted"

Поскольку только пользователь root может установить пакет NGINX и
перезапустить службы, необходимо указать аргумент –b.

Остановка тестового сервера
В этой книге мы будем совершенствовать настройку тестового сер-

вера, поэтому не привязывайтесь к своей первой виртуальной машине.
Просто остановите ее командой:

$ vagrant destroy -f

Удобные настройки Vagrant
Vagrant поддерживает множество конфигурационных параметров для
настройки виртуальных машин, но два из них особенно полезны при
использовании Vagrant для тестирования: установка определенного IP-
адреса и включение переадресации агента.

Переадресация портов и частные IP-адреса
Когда вы создаете новый Vagrantfile командой vagrant init, сетевая

конфигурация по умолчанию позволяет получить доступ к виртуальной
машине Vagrant только через порт SSH, который переадресуется с ло-
кального хоста. Для машины Vagrant, запускаемой первой, назначается

Удобные настройки Vagrant    47

порт 2222, а для каждой последующей будет назначаться другой порт.
Как результат, единственный способ получить доступ к машине Vagrant
с конфигурацией по умолчанию – это подключиться по SSH к localhost
через порт 2222. Vagrant переадресует этот порт в порт 22 внутри вирту-
альной машины Vagrant.

Эта конфигурация по умолчанию не очень удобна для тестирова-
ния веб-приложений, потому что веб-приложение будет прослушивать
порт, к которому у нас нет доступа.

Есть два способа решить эту проблему. Один из них: настроить в
Vagrant переадресацию дополнительных портов. Например, если ваше
веб-приложение прослушивает порт 80 внутри машины Vagrant, то
вы можете настроить переадресацию порта 8040 локального хоста в
порт 80 на машине Vagrant. Точно так же можно переадресовать локаль-
ный порт 8443 в порт 443 гостевой системы.

Как показано на рис. 2.1, мы настроим Vagrant так, чтобы запросы
браузера, поступающие в порты 8080 и 8443, наша локальная машина
переадресовывала в порты 80 и 443 на машине Vagrant. Это позволит
нам получить доступ к веб-серверу, работающему внутри Vagrant, обра-
тившись по URL http://localhost:8080 и https://localhost:8443.

Рис. 2.1. Экспорт портов на машине Vagrant

В примере 2.3 показано, как настроить переадресацию портов в фай-
ле Vagrantfile.

Пример 2.3. Переадресация локального порта 8000 в порт 80 машины Vagrant

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Другие конфигурационные параметры не показаны
 config.vm.network :forwarded_port, host: 8000, guest: 80
 config.vm.network :forwarded_port, host: 8443, guest: 443
end

Переадресация портов для других машин в локальной сети тоже будет
выполняться, поэтому мы считаем более полезным назначать каждой

Браузер

Машина Vagrant

Управляющая машина

48    Глава 2. Установка и настройка

машине Vagrant свой IP-адрес. При таком подходе взаимодействие с
ними становится больше похожим на взаимодействие с частными уда-
ленными серверами: вы можете напрямую подключиться к порту 80
машины с указанным IP-адресом, а не к локальному порту 8000, и толь-
ко вы сможете это сделать, если не станете настраивать переадресацию
портов.

Простейший способ – назначить машине частный IP-адрес. В приме-
ре 2.4 показано, как назначить IP-адрес 192.168.33.10 виртуальной ма-
шине в файле Vagrantfile.

Пример 2.4. Назначение частного IP-адреса машине Vagrant

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Другие конфигурационные параметры не показаны

 config.vm.network "private_network", ip: "192.168.33.10"
end

Если на машине Vagrant запустить веб-сервер, прослушивающий
порт 80, то обратиться к нему можно будет по URL http://192.168.33.10.

В этой конфигурации используется частная сеть Vagrant. Виртуаль-
ная машина будет доступна только с машины, где работает Vagrant. Вы
не сможете подключиться к этому IP-адресу с другой физической ма-
шины, даже если она находится в той же сети, что и машина, на которой
работает Vagrant. Однако разные машины Vagrant могут подключаться
друг к другу.

Дополнительную информацию о различных параметрах настройки
сети в Vagrant вы найдете в документации (https://oreil.ly/EXvBL).

Включение переадресации агента
Если соединяетесь с удаленным репозиторием Git через SSH и ис-

пользуете переадресацию агента, то вам нужно также настроить вир-
туальную машину Vagrant так, чтобы Vagrant включал переадресацию
агента при подключении к агенту через SSH (пример 2.5). Дополнитель-
ные сведения о переадресации агентов вы найдете в главе 20.

Пример 2.5. Включение переадресации агента

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

https://oreil.ly/EXvBL

Подготовка локальной версии Ansible    49

 # Другие конфигурационные параметры не показаны
 # включение переадресации агента ssh
 config.ssh.forward_agent = true
end

Подготовка Docker
Иногда бывает нужно сравнить контейнеры, выполняющиеся в разных
вариантах Linux, и разные среды выполнения контейнеров. Vagrant мо-
жет создать виртуальную машину с нуля, установить Docker или Podman
и автоматически запустить образ контейнера за один раз:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/focal64"
 config.vm.provision "docker" do |d|
 d.run "nginx"
 end
end

Подготовка локальной версии Ansible
Для Vagrant есть внешние инструменты, называемые провайдерами
(provisioners), которые он использует для настройки виртуальной маши-
ны после ее запуска. Помимо Ansible, Vagrant также может предостав-
лять сценарии командной оболочки, устанавливать Chef, Puppet, Salt и
CFEngine.

В примере 2.6 показан файл Vagrantfile с настройкой ansible_local,
согласно которой на виртуальную машину устанавливается система
Ansible и используется в качестве провайдера, в частности, с помощью
сценария Ansible с именем playbook.yml.

Пример 2.6. Vagrantfile

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.provision "ansible_local" do |ansible|
 ansible.compatibility_mode = "2.0"
 ansible.galaxy_role_file = "roles/requirements.yml"
 ansible.galaxy_roles_path = "roles"
 ansible.playbook = "playbook.yml"
 ansible.verbose = "vv"
 end
end

Благодаря этому нет необходимости вручную устанавливать Ansible
на свой компьютер. Если в вашем файле Vagrantfile имеется настройка

50    Глава 2. Установка и настройка

config.vm.provision "ansible_local", то система будет установлена и запущена
в виртуальной машине. При использовании настройки config.vm.provision
"ansible" в Vagrantfile провайдер будет использовать версию Ansible, уже
установленную на вашем компьютере.

Когда запускаются сценарии провайдеров
Когда в первый раз запускается команда vagrant up, Vagrant выполнит
сценарий, осуществляющий подготовку и наполнение виртуальной
машины, и зафиксирует факт своего запуска. После остановки и по-
вторного запуска виртуальной машины Vagrant «вспомнит», что сце-
нарий провайдера уже выполнялся, и не будет повторно запускать
его.

При желании можно принудительно запустить сценарий наполнения
на запущенной виртуальной машине:

$ vagrant provision

Можно также перезагрузить виртуальную машину и запустить сцена-
рий наполнения после перезагрузки:

$ vagrant reload --provision

Аналогично можно запустить остановленную виртуальную машину с
принудительным запуском сценария наполнения:

$ vagrant up --provision

Мы часто используем эти команды для запуска сценариев Ansible из
командной строки с некоторым тегом или ограничением.

Плагины Vagrant
Возможности Vagrant можно расширять с помощью механизма пла-
гинов. В последних версиях достаточно просто перечислить нужные
плагины. Давайте рассмотрим два примера: vagrant-hostmanager и vagrant-
vbguest:

config.vagrant.plugins = ["vagrant-hostmanager", "vagrant-vbguest"]

vagrant-hostmanager
Плагин vagrant-hostmanager помогает обращаться к нескольким вирту-

альным машинам по именам хостов. Он изменит имена хостов и доба-
вит гостевые системы в /etc/hosts, а иногда и сам хост, в зависимости от
конфигурации:

управление файлом /etc/hosts
config.hostmanager.enabled = true

Vagrantfile – это Ruby    51

config.hostmanager.include_offline = true
config.hostmanager.manage_guest = true
config.hostmanager.manage_host = true

vagrant-vbguest
Плагин vagrant-vbguest работает в VirtualBox и может автоматически

устанавливать или обновлять дополнения для гостевой системы (Guest
Additions) в гостевых виртуальных машинах. Бас обычно отключает эти
функции в macOS, потому что обмен файлами между гостевыми систе-
мами и macOS недостаточно быстр и не всегда надежен. Более того, об-
мен файлами между хостом и гостевой системой не имитирует порядок
развертывания программного обеспечения в окружениях разработки,
тестирования, обкатки и промышленной эксплуатации. Но он отлично
подходит для изучения Ansible в Windows:

 # обновление дополнений гостевых систем
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = true
 end

Настройка VirtualBox
При желании можно определить свойства виртуальной машины и ее
внешний вид в VirtualBox. Например:

 host_config.vm.provider "virtualbox" do |vb|
 vb.name = "web"
 virtualbox.customize ["modifyvm", :id,
 "--audio", "none",
 "--cpus", 2,
 "--memory", 2048,
 "--graphicscontroller", "VMSVGA",
 "--vram", "64"
]
 end

Vagrantfile – это Ruby
Файлы Vagrantfile выполняются интерпретатором Ruby. Это знание
может вам пригодиться хотя бы для настройки подсветки синтакси-
са в текстовом редакторе. В Vagrantfile можно объявлять переменные,
использовать управляющие структуры и циклы и т. д. В примерах ис-
ходного кода, прилагаемых к этой книге, есть более сложный пример
файла Vagrantfile (https://oreil.ly/h1jTF), который мы используем для работы
с 15 различными вариантами Linux, как показано на рис. 2.2.

https://oreil.ly/h1jTF

52    Глава 2. Установка и настройка

Рис. 2.2. Запуск различных дистрибутивов Linux в VirtualBox

Для настройки гостевых систем мы используем файл JSON с такими
элементами, как:

[
 {
 "name": "centos8",
 "cpus": 1,
 "distro": "centos",
 "family": "redhat",
 "gui": false,
 "box": "centos/stream8",
 "ip_addr": "192.168.56.6",
 "memory": "1024",
 "no_share": false,
 "app_port": "80",

Vagrantfile – это Ruby    53

 "forwarded_port": "8006"
 },
 {
 "name": "focal",
 "cpus": 1,
 "distro": "ubuntu",
 "family": "debian",
 "gui": false,
 "box": "ubuntu/focal64",
 "ip_addr": "192.168.56.8",
 "memory": "1024",
 "no_share": false,
 "app_port": "80",
 "forwarded_port": "8008"
 }
]

И в файле Vagrantfile у нас есть пара конструкций для создания одной
гостевой системы по имени при входе, например:

$ vagrant up focal

Вот сам файл Vagrantfile:

Vagrant.require_version ">= 2.0.0"
Подключить модуль JSON
require 'json'
Прочитать файл JSON с настройками
f = JSON.parse(File.read(File.join(File.dirname(__FILE__), 'config.json')))
Локальная переменная PATH_SRC для монтирования
$PathSrc = ENV['PATH_SRC'] || "."
Vagrant.configure(2) do |config|
 config.vagrant.plugins = ["vagrant-hostmanager", "vagrant-vbguest"]
 # проверить обновления базового образа
 config.vm.box_check_update = true
 # небольшая задержка
 config.vm.boot_timeout = 1200
 # запретить обновление дополнений гостевой системы
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end
 # включить переадресацию агента ssh
 config.ssh.forward_agent = true
 # использовать стандартный для vagrant ключ ssh
 config.ssh.insert_key = false
 # управление файлом /etc/hosts
 config.hostmanager.enabled = true
 config.hostmanager.include_offline = true

54    Глава 2. Установка и настройка

 config.hostmanager.manage_guest = true
 config.hostmanager.manage_host = true
 # Цикл по элементам в файле JSON
 f.each do |g|
 config.vm.define g['name'] do |s|
 s.vm.box = g['box']
 s.vm.hostname = g['name']
 s.vm.network 'private_network', ip: g['ip_addr']
 s.vm.network :forwarded_port,
 host: g['forwarded_port'],
 guest: g['app_port']
 # установить значение no_share равным false,
 # чтобы разрешить совместное использование файлов
 s.vm.synced_folder ".", "/vagrant", disabled: g['no_share']
 s.vm.provider :virtualbox do |virtualbox|
 virtualbox.customize ["modifyvm", :id,
 "--audio", "none",
 "--cpus", g['cpus'],
 "--memory", g['memory'],
 "--graphicscontroller", "VMSVGA",
 "--vram", "64"
]
 virtualbox.gui = g['gui']
 virtualbox.name = g['name']
 end
 end
 end
 config.vm.provision "ansible_local" do |ansible|
 ansible.compatibility_mode = "2.0"
 ansible.galaxy_role_file = "roles/requirements.yml"
 ansible.galaxy_roles_path = "roles"
 ansible.playbook = "playbook.yml"
 ansible.verbose = "vv"
 end
end

Свойства всех виртуальных машин настраиваются в файле config.json.

Настройка промышленного окружения
Для подключения к машинам Linux/macOS/BSD Ansible использует SSH,
а для подключения к машинам Windows – WinRM. Сетевыми устрой-
ствами можно управлять через HTTPS или SSH. Никакого дополнитель-
ного программного обеспечения на целевых хостах устанавливать не
требуется (при условии, что на машинах Linux/macOS/BSD установлен
Python, а на машинах Windows – PowerShell).

Заключение    55

Традиционные системные администраторы проявляют здоровую
осторожность при внедрении инструментов, требующих системных
привилегий, потому что обычно только сами системные администра-
торы имеют такие разрешения. В Unix принято делегировать разработ-
чикам доступ только к определенным командам с помощью sudo с тща-
тельно выверенными файлами в /etc/sudoers.d/.

Этот подход не работает ни с Ansible, ни с такой ограничительной
оболочкой, как rbash. Ansible создает временные каталоги со случайны-
ми именами для различных сценариев на Python, тогда как sudo нужны
точные команды. Альтернативой является смещение фокуса на содер-
жание изменений в системе управления версиями в окружении обкат-
ки и наличие файла с настройками sudo для группы ansible, например:

%ansible ALL=(ALL) ALL

Заключение
В этой главе был представлен обзор создания и настройки тестового
окружения с помощью VirtualBox и Vagrant для изучения Ansible. Vagrant
поддерживает множество настроек, которые не рассматривались в этой
главе. Дополнительные сведения вы найдете в официальной докумен-
тации Vagrant. Описание всех возможностей Vagrant выходит за рамки
этой книги. Для более близкого знакомства с Vagrant мы рекомендуем
прочитать книгу «Vagrant: Up and Running» (O'Reilly) Митчелла Хашимо-
то (Mitchell Hashimoto), создателя Vagrant.

Глава 3
Сценарии: начало

Приступая к использованию Ansible, вы начинаете с написания сцена-
риев. Сценарием (playbook) в Ansible называется файл, описывающий
порядок управления конфигурациями. Рассмотрим, например, уста-
новку веб-сервера NGINX и его настройку для поддержки защищенных
соединений.

К концу этой главы у вас появятся следующие файлы и каталоги:

.
├── Vagrantfile
├── ansible.cfg
├── files
│ ├── index.html
│ ├── nginx.conf
│ ├── nginx.crt
│ └── nginx.key
├── inventory
│ └── vagrant.ini
├── requirements.txt
├── templates
│ ├── index.html.j2
│ └── nginx.conf.j2
├── webservers-tls.yml
├── webservers.yml
└── webservers2.yml

Подготовка
Измените содержимое Vagrantfile, как показано ниже:

Vagrant.configure(2) do |config|
 config.vm.box = "ubuntu/focal64"
 config.vm.hostname = "testserver"
 config.vm.network "forwarded_port",
 id: 'ssh', guest: 22, host: 2202, host_ip: "127.0.0.1", auto_correct: false
 config.vm.network "forwarded_port",
 id: 'http', guest: 80, host: 8080, host_ip: "127.0.0.1"

Очень простой сценарий    57

 config.vm.network "forwarded_port",
 id: 'https', guest: 443, host: 8443, host_ip: "127.0.0.1"
 # запретить обновление дополнений гостевой системы
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end
 config.vm.provider "virtualbox" do |virtualbox|
 virtualbox.name = "ch03"
 end
end

Эти настройки отобразят порты 8080 и 8443 локальной машины в
порты 80 и 443 машины Vagrant, а также зарезервируют переадресацию
локального порта 2202 в порт 22 этой конкретной виртуальной маши-
ны, как мы делали это в главе 1. После сохранения изменений дайте
команду применить их:

$ vagrant up

В результате на экране должны появиться следующие строки:

==> default: Forwarding ports...
 default: 22 (guest) => 2202 (host) (adapter 1)
 default: 80 (guest) => 8080 (host) (adapter 1)
 default: 443 (guest) => 8443 (host) (adapter 1)

Теперь ваш тестовый сервер запущен и готов к экспериментам.

Очень простой сценарий
В нашем первом примере сценария мы настроим хост для запуска про-
стого веб-сервера. Сначала посмотрим, что получится, если запустить
сценарий webservers.yml (пример 3.1), а затем детально изучим его со-
держимое. Это простейший из возможных сценариев для решения та-
кой задачи, однако в процессе обсуждения мы будем постепенно улуч-
шать его.

Пример 3.1. webservers.yml

- name: Configure webserver with nginx
 hosts: webservers
 become: True
 tasks:
 - name: Ensure nginx is installed
 package: name=nginx update_cache=yes

 - name: Copy nginx config file

58    Глава 3. Сценарии: начало

 copy:
 src: nginx.conf
 dest: /etc/nginx/sites-available/default

 - name: Enable configuration
 file: >
 dest=/etc/nginx/sites-enabled/default
 src=/etc/nginx/sites-available/default
 state=link

 - name: Copy index.html
 template: >
 src=index.html.j2
 dest=/usr/share/nginx/html/index.html

 - name: Restart nginx
 service: name=nginx state=restarted
...

Файл конфигурации NGINX
Данному сценарию необходим дополнительный файл конфигурации

NGINX.
NGINX распространяется с готовым конфигурационным файлом,

настраивающим сервер на обслуживание только статичных файлов, и
очень часто его приходится адаптировать под конкретные нужды. Поэ-
тому мы изменим файл конфигурации по умолчанию в рамках данного
примера. Позднее мы также добавим в файл конфигурации поддержку
TLS. В примере 3.2 приводится стандартный конфигурационный файл
NGINX. Сохраните его в файле с именем playbooks/files/nginx.conf1.

Пример 3.2. nginx.conf

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /usr/share/nginx/html;
 index index.html index.htm;

 server_name localhost;

 location / {
 try_files $uri $uri/ =404;
 }
}

1	 Наш файл nginx.conf, несмотря на данное ему имя, заменит файл sites-enabled/default, а не ос-
новной конфигурационный файл /etc/nginx.conf.

Очень простой сценарий    59

Создание веб-страницы
Теперь добавим простую веб-страницу. Ansible включает систему ге-

нерирования HTML-страниц на основе файлов-шаблонов. Сохраните
код из примера 3.3 в файле playbooks/templates/index.html.j2.

<html>
 <head>
 <title>Welcome to ansible</title>
 </head>
 <body>
 <h1>Nginx, configured by Ansible</h1>
 <p>If you can see this, Ansible successfully installed nginx.</p>

 <p>Running on {{ inventory_hostname }}</p>
 </body>
</html>

В этом шаблоне используется специальная переменная Ansible inven-
tory_hostname. Обрабатывая шаблон, Ansible заменит ссылку на нее име-
нем хоста, указанным в реестре (рис. 3.1). Полученная разметка HTML
подскажет браузеру, как отобразить страницу.

Рис. 3.1. Вид получившейся страницы

В соответствии с соглашениями Ansible копирует файлы из каталога
files, а шаблоны Jinja2 ищет в подкаталоге templates. Поиск в этих ката-
логах система Ansible выполняет автоматически. Мы будем следовать
этому соглашению на протяжении всей книги.

Создание группы веб-серверов
Теперь создадим группу webservers в файле реестра, чтобы получить

возможность сослаться на нее в сценарии. Пока в эту группу войдет
только наш тестовый сервер testserver.

Файлы реестра имеют формат .ini. Подробнее этот формат мы рассмот
рим далее в книге. Откройте файл playbooks/inventory/vagrant.ini в редак-
торе и добавьте строку [webservers] над строкой testserver, как показано
в примере 3.4. Это означает, что testserver включен в группу webservers.

60    Глава 3. Сценарии: начало

Пример 3.4. playbooks/inventory/vagrant.ini

[webservers]
testserver ansible_port=2202

[webservers:vars]
ansible_user = vagrant
ansible_host = 127.0.0.1
ansible_private_key_file = .vagrant/machines/default/virtualbox/private_key

В главе 1 мы создали файл ansible.cfg со ссылкой на реестр, поэтому
нет необходимости использовать параметр командной строки -i. Те-
перь проверим группы в реестре с помощью следующей команды:

$ ansible-inventory --graph

Она должна вывести:

@all:
 |--@ungrouped:
 |--@webservers:
 | |--testserver

Запуск сценария
Сценарии запускаются командой ansible-playbook, например:

$ ansible-playbook webservers.yml

В примере 3.5 показано, как должен выглядеть результат.

Пример 3.5. Результат запуска сценария командой ansible-playbook

PLAY [Configure webserver with nginx] **
TASK [Gathering Facts] ***
ok: [testserver]

TASK [Ensure nginx is installed] ***
changed: [testserver]

TASK [Copy nginx config file] **
changed: [testserver]

TASK [Enable configuration] **
ok: [testserver]

TASK [Copy index.html] ***
changed: [testserver]

TASK [Restart nginx] ***
changed: [testserver]

PLAY RECAP ***

Сценарии пишутся на YAML    61

testserver : ok=6 changed=4 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Playbook run took 0 days, 0 hours, 0 minutes, 18 seconds

Если в процессе работы сценария не возникло никаких ошибок, то по
его завершении можно запустить веб-браузер и открыть страницу http://
localhost:8080, которая должна выглядеть, как показано на рис. 3.11.

Ни одна книга O'Reilly с такой обложкой не была бы полной
без описания программы cowsay. Если на вашей локальной
машине установлена программа cowsay, вывод Ansible будет
выглядеть так:

< PLAY [Configure webserver with nginx] >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Если вы не хотите видеть говорящих коров, то добавьте в
файл ansible.cfg следующие строки:

[defaults]
cow_selection = random
cowsay_enabled_stencils=cow,bunny,kitty,koala,moose,sheep,tux

Также отключить использование программы cowsay можно
настройкой переменной окружения ANSIBLE_NOCOWS:

$ export ANSIBLE_NOCOWS=1

Сценарии пишутся на YAML
Все сценарии Ansible пишутся на YAML. YAML – это язык разметки,
напоминающий JSON, но намного проще для восприятия человеком.
Прежде чем перейти к сценарию, рассмотрим основные понятия YAML,
наиболее важные при написании сценариев.

Допустимый файл в формате JSON является также допусти-
мым файлом в формате YAML, потому что YAML допускает за-
ключение строк в кавычки, воспринимает значения true и false
как действительные логические выражения, а также синтаксис
определения списков и словарей, аналогичный синтаксису
массивов и объектов в JSON. Но я не советую писать сценарии
на JSON, поскольку человеку гораздо проще читать YAML.

1	 Если у вас возникли ошибки, то перейдите к главе 8, где описываются приемы отладки.

62    Глава 3. Сценарии: начало

Начало файла
Документы YAML начинаются с трех дефисов, обозначающих его

начало. Каждый файл Ansible может содержать только один документ
YAML.

Сценарии Ansible принято начинать с трех дефисов (чтобы явно обо-
значить начало). Однако Ansible не посчитает ошибкой, если вы забуде-
те указать эти дефисы.

Конец файла
Файлы YAML принято заканчивать тремя точками, чтобы явно отме-

тить конец документа. Но многие не следуют этой практике.

...

Однако Ansible не посчитает ошибкой, если вы забудете поставить
эти три точки в конце своего файла.

Комментарии
Комментарии начинаются со знака решетки (#) и продолжаются до

конца строки, как в сценариях на языке командной оболочки, Python и
Ruby. Отступы в комментариях принято устанавливать вровень с кодом.

Это комментарий на языке YAML

Отступы и пробельные строки
Как и в языке Python, в документах YAML принято оформлять от-

ступы пробелами, чтобы уменьшить количество знаков пунктуации.
Мы используем два пробела. А для большей удобочитаемости мы пред-
почитаем добавлять пробельные строки между задачами в сценарии и
между разделами в файлах.

Строки
Обычно строки в YAML не заключаются в кавычки, даже если они

включают пробелы. Хотя это не возбраняется. Например, вот строка на
языке YAML:

это пример предложения

Аналог в JSON выглядит так:

"это пример предложения"

Иногда Ansible требует заключать строки в кавычки. Хорошей практи-
кой считается просто заключать в кавычки все строки. В двойные кавыч-

Сценарии пишутся на YAML    63

ки обычно принято заключать имена переменных в выражениях интер-
поляции. Одинарные кавычки принято использовать для литеральных
значений, которые не должны интерполироваться, таких как номера
версий и числа с плавающей точкой или строки с зарезервированными
символами, такими как двоеточия, круглые или фигурные скобки. Но об
этом чуть позже.

Никогда, никогда не заключайте в кавычки логические значения!
Помните: NO – это строка (аббревиатура, обозначающая Норвегию
[Norway]).

Почему в одном случае используется «True»,
а в другом «Yes»?

Внимательный читатель заметит, что в webservers.yml в одном
случае используется True (для получения привилегий root
с помощью become) и yes в другом случае (для обновления
кеша apt).
Ansible – достаточно гибкая система в отношении обозначе-
ния в сценариях значений «истина» и «ложь». Строго говоря,
аргументы модуля (такие как update_cache=yes) интерпретиру-
ются иначе, чем значения где-либо еще в сценарии (такие
как become: True). Эти и другие значения обрабатываются син-
таксическим анализатором YAML и, следовательно, подчиня-
ются обозначениям значений «истина» и «ложь» YAML:

•	 истина в YAML: true, True, TRUE, yes, Yes, YES, on, On, ON;
•	 ложь в YAML: false, False, FALSE, no, No, NO, off, Off, OFF.

Аргументы передаются модулям в виде строк и подчиняются
внутренним соглашениям в Ansible:

•	 истина в аргументе модуля: yes, on, 1, true;
•	 ложь в аргументе модуля: no, off, 0, false.

Рекомендуется проверять все файлы YAML с помощью инст
румента командной строки yamllint. С настройками по умол-
чанию он выдаст следующее предупреждение:

warning truthy value should be one of [false, true] (truthy)

Придерживаясь этого правила обозначения истинности, Бас
использует только true и false (без кавычек).

Булевы выражения
В YAML есть собственный логический тип. Он предлагает широкий

выбор строк, которые могут интерпретироваться как «истина» и «ложь».
Вот примеры истинных значений в YAML:

64    Глава 3. Сценарии: начало

true, True, TRUE, yes, Yes, YES, on, On, ON

В JSON истинное значение выглядит так:
true

А это примеры ложных значений в YAML:
false, False, FALSE, no, No, NO, off, Off, OFF

В JSON же используется только одно значение:
false

Бас использует только строчные буквы true и false. Одна из причин
таких предпочтений заключается в том, что эти два значения являют-
ся возвращаемыми; например, они выводятся в режиме отладки, даже
при использовании любого другого разрешенного варианта. Поскольку
true и false также являются допустимыми логическими значениями в
JSON, их использование упрощает использование динамических дан-
ных, потому что действия Ansible возвращают результаты в виде дан-
ных в формате JSON.

Списки
Списки в YAML похожи на массивы в JSON и Ruby или списки в Python.

Строго говоря, в YAML они называются последовательностями, но мы
называем их списками, чтобы избежать противоречий с официальной
документацией Ansible.

Списки оформляются с помощью отступов и дефиса. Определение
каждого списка начинается с его имени и следующего за ним двоето-
чия:

shows:
 - My Fair Lady
 - Oklahoma
 - The Pirates of Penzance

Аналог в JSON:

{
 "shows": [
 "My Fair Lady",
 "Oklahoma",
 "The Pirates of Penzance"
]
}

Как видите, списки в YAML легче читаются, потому что при их оформ-
лении используется меньше лишних символов. Еще раз обратите вни-
мание, что в YAML не нужно заключать строки в кавычки даже при на-
личии в них пробелов. YAML также поддерживает формат встроенных

Сценарии пишутся на YAML    65

списков. Такие списки заключаются в квадратные скобки, а элементы
списка разделяются запятой, как показано ниже:

shows: [My Fair Lady , Oklahoma , The Pirates of Penzance]

Словари
Словари в YAML подобны объектам в JSON, словарям в Python,

хеш-массивам в Ruby или ассоциативным массивам в PHP. Технически
в YAML они называются отображениями (mapping), но мы называем их
словарями, чтобы избежать противоречий с официальной документа-
цией Ansible. Они выглядят так:

address:
 street: Main Street
 appt: 742
 city: Logan
 state: Ohio

Аналог в JSON:

{
 "address": {
 "street": "Main Street",
 "appt": 742,
 "city": "Logan",
 "state": "Ohio"
 }
}

YAML также поддерживает формат встроенных словарей. Такие сло-
вари заключаются в фигурные скобки, а элементы словаря разделяются
запятой, как показано ниже:

address: { street: Main Street, appt: '742', city: Logan, state: Ohio}

Многострочные строковые значения
YAML поддерживает многострочные строковые значения, распозна-

вая так называемые операторные скобки (| и >), символы, обозначаю-
щие начало многострочного текста (+ и –), и даже отступы (от 1 до 9).
Например, чтобы задать предварительно отформатированный тексто-
вый блок, можно использовать вертикальную черту со знаком плюс (|+):

visiting_address: |+
 Department of Computer Science

 A.V. Williams Building
 University of Maryland

66    Глава 3. Сценарии: начало

city: College Park
state: Maryland

Синтаксический анализатор YAML сохранит разрывы строк, как вы
указали их.

JSON не поддерживает использование многострочных строковых
значений. Поэтому все разрывы строк нужно заменить на \n или ис-
пользовать массив:

{
 "visiting_address": ["Department of Computer Science",
 "A.V. Williams Building",
 "University of Maryland"],
 "city": "College Park",
 "state": "Maryland"
}

Чистый YAML вместо строковых аргументов
При разработке сценариев Ansible вы часто будете сталкиваться с не-

обходимостью передать модулю множество аргументов. Для эстетики
их можно поместить в несколько строк. Кроме того, желательно, чтобы
Ansible интерпретировал аргументы как словарь YAML, потому что в
YAML можно использовать yamllint для поиска опечаток , которые труд-
но отыскать при использовании строкового формата. Этот стиль также
позволяет вводить более короткие строки, что упрощает сравнение вер-
сий.

Лорин нравится такой стиль:

- name: Ensure nginx is installed
 package: name=nginx update_cache=true

Бас предпочитает стиль, принятый в YAML, потому что его кор-
ректность можно проанализировать с помощью yamllint:

- name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

Структура сценария
Применив все правила, описанные выше, к нашему сценарию, получим
вторую версию (пример 3.6):

Пример 3.6. webservers2.yml

- name: Configure webserver with nginx

Операции    67

 hosts: webservers
 become: true
 tasks:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

 - name: Copy nginx config file
 copy:
 src: nginx.conf
 dest: /etc/nginx/sites-available/default

 - name: Enable configuration
 file:
 src: /etc/nginx/sites-available/default
 dest: /etc/nginx/sites-enabled/default
 state: link

 - name: Copy home page template
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html

 - name: Restart nginx
 service:
 name: nginx
 state: restarted
...

Операции
В любом формате – YAML или JSON – сценарий является списком слова-
рей, или списком операций (play). Наш примерный сценарий содержит
список с единственной операцией с именем Configure webserver with nginx
(Настройка веб-сервера nginx).

Вот эта операция:

- name: Configure webserver with nginx
 hosts: webservers
 become: true

 tasks:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

68    Глава 3. Сценарии: начало

 - name: Copy nginx config file
 copy:
 src: nginx.conf
 dest: /etc/nginx/sites-available/default

 - name: Enable configuration
 file:
 src: /etc/nginx/sites-available/default
 dest: /etc/nginx/sites-enabled/default
 state: link

 - name: Copy index.html
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html

 - name: Restart nginx
 service:
 name: nginx
 state: restarted
...

Каждая операция должна содержать переменную hosts, определя-
ющую список хостов или группу, такую как webservers или волшебную
группу all (все хосты в реестре), к которым будет применяться эта опе-
рация. Воспринимайте операцию как нечто, связывающее хосты и за-
дачи. Иногда вам придется определять разные операции для разных
групп хостов, и вы будете определять по несколько операций в сцена-
риях.

Кроме хостов и задач, операции также могут содержать параметры.
Мы рассмотрим этот вопрос позднее, а сейчас познакомимся с тремя
основными параметрами.

name:

	 Комментарий, описывающий операцию. Ansible выведет его
перед запуском операции. Считается хорошим тоном начинать
комментарий с заглавной буквы.

become:

	 Если имеет значение «истина», то Ansible выполнит каждую за-
дачу, предварительно приобретя привилегии пользователя, объ-
явленного в параметре become_user. Это может пригодиться для
управления серверами Linux, поскольку многие версии этой си-
стемы не позволяют устанавливать SSH-соединение с привилеги-
ями root. При необходимости параметр become можно указать для
каждой задачи или для каждой операции, а в become_user можно

Операции    69

указать пользователя root (этот пользователь подразумевается по
умолчанию, если он опущен) или другого пользователя, но имей-
те в виду, что become подчиняется политикам вашей системы. Воз-
можно, потребуется изменить файл sudoers, чтобы назначенный
пользователь мог получить привилегии root.

vars:

	 Список переменных и значений. Мы увидим назначение этого
параметра позднее в данной главе.

Задачи
Наш пример сценария содержит одну операцию с пятью задачами.

Вот первая задача:

- name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

В этом примере задача вызывает модуль с именем package и передает
ему аргументы name: nginx и update_cache: yes. Эти аргументы сообщают
модулю package, что он должен установить пакет с именем nginx и обно-
вить кеш пакетов (эквивалентно выполнению команды apt-get update в
Ubuntu) перед установкой пакета.

Даже притом, что имена задач можно не указывать, я рекомендую
использовать их, поскольку они служат хорошими напоминаниями их
целей. Имена будут особенно полезны для тех, кто попытается разо-
браться в вашем сценарии, в том числе и вам через полгода. Как мы уже
видели, Ansible выводит имя задачи перед ее запуском. Наконец, как вы
увидите в главе 16, можно также использовать флаг --start-at-task <имя
задачи>, чтобы с помощью ansible-playbook запустить сценарий с середины
операции. В этом случае необходимо сослаться на задачу по имени.

Аргументы для модуля можно передать команде ansible в виде одной
строки в параметре -a и использовать параметр -m для передачи имени
модуля:

$ ansible webservers -b -m package -a 'name=nginx update_cache=true'

Однако важно помнить, что с точки зрения парсера Ansible аргумен-
ты воспринимаются как одна строка, а не словарь. В командной стро-
ке это не вызывает никаких проблем, но в сценариях является частым
источником ошибок, особенно когда используются сложные модули
с большим количеством необязательных аргументов. Для облегчения
управления версиями Бас предпочитает разбивать аргументы на не-
сколько строк. Поэтому он всегда использует синтаксис YAML:

70    Глава 3. Сценарии: начало

- name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

Модули
Модули – это сценарии, которые поставляются с Ansible и производят

определенные действия на хосте. Правда, надо признать, что это до-
вольно общее описание, но среди модулей Ansible встречается множе-
ство вариантов. Как рассказывалось в главе 1, Ansible выполняет задачу
на хосте, генерируя сценарий, исходя из имени модуля и аргументов, а
затем копирует этот сценарий на хост и запускает его. Модули для Unix/
Linux, которые поставляются с Ansible, написаны на Python, а модули
для Windows написаны на PowerShell. Вы же можете писать свои модули
на любом языке.

В этой главе используются следующие модули.

package
	 Устанавливает или удаляет пакеты с использованием диспетчера

пакетов хоста.

copy
	 Копирует файл с локальной машины на хосты.

file
	 Устанавливает атрибуты файла, символической ссылки или ката-

лога.

service
	 Запускает, останавливает или перезапускает службу.

template
	 Создает файл на основе шаблона и копирует его на хосты.

Документация по модулям Ansible
Ansible поставляется с утилитой командной строки ansible-doc, ко-

торая выводит документацию по модулям Ansible. Используйте ее как
man-страницы для модулей Ansible. Например, для вывода документа-
ции к модулю service выполните команду:

$ ansible-doc service

Чтобы найти более конкретные модули, связанные с диспетчером па-
кетов apt в Ubuntu, попробуйте выполнить команду:

$ ansible-doc -l | grep ^apt

Есть изменения? Отслеживание состояния хоста    71

Резюме
Итак, сценарий содержит одну или несколько операций. Операции

назначаются неупорядоченному множеству хостов и содержат упоря-
доченные списки задач. Каждая задача использует ровно один модуль.
Диаграмма на рис. 3.2 изображает взаимосвязи между сценариями,
операциями, хостами, задачами и модулями.

Рис. 3.2. Диаграмма взаимосвязей

Есть изменения? Отслеживание состояния хоста
Когда вы запускаете команду ansible-playbook, она выводит информацию
о состоянии каждой задачи, выполняемой в рамках операции.

Вернитесь к примеру 3.5 и обратите внимание, что состояние неко-
торых задач указано как changed (изменено), а других – ok. Например, за-
дача «Ensure nginx is installed task» (Проверить, установлен ли nginx)
имеет статус changed. На моем терминале он выделен желтым.

TASK: [Ensure nginx is installed] ***
changed: [testserver]

С другой стороны, задача «Enable configuration» (Включить конфигу-
рацию) имеет статус ok, на моем терминале он выделен зеленым:

TASK: [Enable configuration] **
ok: [testserver]

Любая запущенная задача потенциально может изменить состояние
хоста. Перед тем как совершить какое-либо действие, модули проверя-
ют, требуется ли изменить состояние хоста. Если состояние хоста соот-
ветствует значениям аргументов модуля, то Ansible не предпринимает
никаких действий и сообщает, что статус ok.

Если между состоянием хоста и значениями аргументов модуля есть
разница, то Ansible вносит изменения в состояние хоста и сообщает, что
статус был изменен (changed).

Как показано в примере выше, задача «Ensure nginx is installed» внес-
ла изменения, а это значит, что до запуска сценария пакет nginx не был
установлен. Задача «Enable configuration» не внесла изменений, значит,
на сервере уже был сохранен файл конфигурации, и он идентичен тому,

Сценарий
 (playbook)

Операция
(play)

Задача

Хост

Модуль

72    Глава 3. Сценарии: начало

который предполагалось скопировать. Из вышесказанного следует, что
в сценарии могут иметься «пустые операции» (ничего не делающие),
которые мы удалим. Старайтесь запускать сценарии чаще и проверяй-
те, что при последующих запусках задачи возвращают статус ok.

Позже в этой главе мы увидим, что способность Ansible определять
изменение состояния можно использовать для выполнения дополни-
тельных действий с помощью обработчиков. Но даже без обработчиков
полезно иметь в своем распоряжении информацию об изменении со-
стояния хостов в результате выполнения сценария.

Становимся знатоками: поддержка TLS
Теперь рассмотрим более сложный пример. Добавим в предыдущий
сценарий настройку поддержки TLSv1.2 веб-сервером. Полный сцена-
рий приводится в примере 3.9, а в этом разделе мы кратко представим
некоторые возможности Ansible:

•	 переменные;
•	 циклы;
•	 обработчики;
•	 тесты;
•	 проверки.

TLS и SSL
Возможно, вам более знакома аббревиатура SSL (Secure
Sockets Layer – слой защищенных сокетов), чем TLS. SSL –
это более старый протокол, используемый для обеспечения
безопасности взаимодействий браузеров и веб-серверов;
именно его использование отмечается добавлением символа
«S» в HTTPS. SSL продолжает развиваться, и самая современ-
ная его версия имеет номер v1.3. Несмотря на то что многие
продолжают использовать аббревиатуру SSL, подразумевая
более новый протокол, в этой книге я буду использовать точ-
ное название: TLS.

Создание сертификата TLS
Мы должны вручную создать сертификат TLS. Для промышленной

эксплуатации сертификат TLS необходимо приобрести в центре серти-
фикации. Но мы будем использовать «самоподписанный» (self-signed)
сертификат, поскольку его можно создать бесплатно. Выполните следу-
ющую команду в каталоге ansiblebook/ch03/playbooks:

Становимся знатоками: поддержка TLS    73

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
 -subj /CN=localhost \
 -keyout files/nginx.key -out files/nginx.crt

Она создаст файлы nginx.key и nginx.crt в подкаталоге files внутри ка-
талога playbooks. Срок действия сертификата ограничен одним годом
(365 дней) со дня его создания.

Переменные
Теперь операция в нашем сценарии включает раздел vars:. Этот раз-

дел определяет пять переменных и каждой присваивает значение:

vars:
 tls_dir: /etc/nginx/ssl/
 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

В нашем примере каждое значение – это строка (например, /etc/nginx/
sites-available/default), но вообще значением переменной может слу-
жить любое выражение, допустимое в YAML. В дополнение к строкам и
булевым выражениям можно использовать списки и словари.

Переменные можно использовать в задачах и в файлах шаблонов. Для
ссылки на переменные используются скобки, например {{ mustache }}.
Ansible заменит это выражение {{ mustache }} значением перемен-
ной mustache.

В нашем сценарии имеется следующая задача:

- name: Manage nginx config template
 template:
 src: nginx.conf.j2
 dest: "{{ conf_file }}"
 mode: '0644'
 notify: Restart nginx

При ее выполнении Ansible заменит "{{ conf_file }}" на /etc/nginx/sites-
available/default.

Когда использовать кавычки в строках Ansible
Если ссылка на переменную следует сразу после имени модуля, то

парсер YAML ошибочно воспримет ее как начало встроенного словаря.
Например:

- name: Perform some task
 command: {{ myapp }} -a foo

74    Глава 3. Сценарии: начало

Ansible попытается интерпретировать первую часть выражения
{{ myapp }} -a foo не как строку, а как словарь и выдаст ошибку. В данном
случае необходимо заключить аргументы в кавычки:

- name: Perform some task
 command: "{{ myapp }} -a foo"

Похожая ошибка возникает при наличии двоеточия в аргументе. На-
пример:

- name: Show a debug message
 debug:
 msg: The debug module will print a message: neat, eh?

Двоеточие в аргументе msg сбивает с толку синтаксический анализа-
тор YAML. Чтобы избежать этого, необходимо заключить в кавычки все
выражение аргумента. Для этого можно использовать и одинарные, и
двойные кавычки; Бас предпочитает использовать двойные кавычки,
когда в строке есть переменные:

- name: Show a debug message
 debug:
 msg: "The debug module will print a message: neat, eh?"

Теперь синтаксический анализатор YAML не ошибется. Ansible под-
держивает чередование одинарных и двойных кавычек, поэтому мож-
но поступить так:

- name: Show escaped quotes
 debug:
 msg: '"The module will print escaped quotes: neat, eh?"'

- name: Show quoted quotes
 debug:
 msg: "'The module will print quoted quotes: neat, eh?'""

Это дает ожидаемый результат:

TASK [Show escaped quotes] ***
ok: [localhost] ==> {
 "msg": "\"The module will print escaped quotes: neat, eh?\""
}
TASK [Show quoted quotes] **
ok: [localhost] ==> {
 "msg": "'The module will print quoted quotes: neat, eh?'"
}

Становимся знатоками: поддержка TLS    75

Создание шаблона с конфигурацией NGINX
Если вы занимались веб-программированием, то, вероятно, сталки-

вались с системой шаблонов для создания разметки HTML. Если нет,
то поясню, что шаблон – это простой текстовый файл, где с использо-
ванием специального синтаксиса определяются переменные, которые
должны заменяться фактическими значениями. Если вы когда-либо
получали автоматически сгенерированное электронное письмо от ка-
кой-либо компании, то наверняка заметили, что в письме используется
шаблон, аналогичный приведенному в примере 3.7.

Пример 3.7. Шаблон электронного письма
Dear {{ name }},
You have {{ random_number }} Bitcoins in your account, please click: {{ phishing_url }}.

В случае с Ansible это не HTML-страницы или электронные письма,
а файлы конфигурации. Если можно избежать редактирования файлов
конфигурации вручную, то лучше так и поступить. Это особенно полез-
но, если используются одни и те же конфигурационные данные (напри-
мер, IP-адрес сервера очереди или учетные сведения для базы данных)
в нескольких файлах. Гораздо разумнее поместить информацию о кон-
кретном окружении в одном месте, а затем создавать все файлы, требу-
ющие этой информации, на основе шаблона.

Для поддержки шаблонов в Ansible используется механизм Jinja2 , как
и в замечательном веб-фреймворке Flask. Если вы когда-либо пользова-
лись библиотеками шаблонов, такими как Mustache, ERB или Django, то
Jinja2 покажется вам знакомым инструментом.

В файл конфигурации NGINX необходимо добавить информацию о
месте хранения ключа и сертификата TLS. Чтобы исключить использо-
вание жестко заданных значений, которые могут изменяться со време-
нем, мы воспользуемся поддержкой шаблонов в Ansible.

В каталоге playbooks создайте подкаталог templates и файл templates/
nginx.conf.j2, как показано в примере 3.8.

Пример 3.8. templates/nginx.conf.j2

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 listen 443 ssl;
 ssl_protocols TLSv1.2;
 ssl_prefer_server_ciphers on;
 root /usr/share/nginx/html;
 index index.html;

76    Глава 3. Сценарии: начало

 server_tokens off;
 add_header X-Frame-Options DENY;
 add_header X-Content-Type-Options nosniff;

 server_name {{ server_name }};
 ssl_certificate {{ tls_dir }}{{ cert_file }};
 ssl_certificate_key {{ tls_dir }}{{ key_file }};

 location / {
 try_files $uri $uri/ =404;
 }
}

Мы используем расширение файла .j2, чтобы показать, что файл яв-
ляется шаблоном Jinja2. Однако вы можете использовать любое другое
расширение. Для Ansible это неважно.

В нашем шаблоне используются четыре переменные.

server_name

	 Имя хоста веб-сервера (например, www.example.com).

cert_file

	 Путь к файлу сертификата TLS.

key_file

	 Путь к файлу закрытого ключа TLS.

tls_dir

	 Каталог со всеми этими файлами.

Мы определим эти переменные в сценарии.
Ansible также использует механизм шаблонов Jinja2 для определе-

ния переменных в сценариях. Вспомните: мы уже встречали выра-
жение {{ conf_file }} в самом сценарии. Вы можете использовать все
возможности Jinja2 в своих шаблонах, но мы не будем подробно рас-
сматривать их здесь. За дополнительной информацией о шаблонах
Jinja2 обращайтесь к официальной документации (https://oreil.ly/Je0rA).
Впрочем, вам едва ли потребуются все продвинутые возможности. Но
вы почти наверняка будете пользоваться фильтрами; мы рассмотрим
их в последующей главе.

Циклы
Если потребуется запустить задачу для каждого элемента из списка,

то для этого можно использовать цикл loop. Цикл выполняет задачу не-

https://oreil.ly/Je0rA

Становимся знатоками: поддержка TLS    77

сколько раз, каждый раз заменяя элемент item разными значениями из
указанного списка:

- name: Copy TLS files
 copy:
 src: "{{ item }}"
 dest: "{{ tls_dir }}"
 mode: '0600'
 loop:
 - "{{ key_file }}"
 - "{{ cert_file }}"
 notify: Restart nginx

Обработчики
А теперь вернемся к нашему сценарию webservers-tls.yml (пример 3.9).

Он содержит раздел handlers с определениями обработчиков:

handlers:
 - name: Restart nginx
 service:
 name: nginx
 state: restarted

Также в некоторых задачах можно увидеть инструкцию notify:

- name: Manage nginx config template
 template:
 src: nginx.conf.j2
 dest: "{{ conf_file }}"
 mode: '0644'
 notify: Restart nginx

Обработчики – это одна из форм условного выполнения, поддержи-
ваемых в Ansible. Обработчик схож с задачей, но запускается только
после получения уведомления от задачи. Задача посылает уведомле-
ние, если обнаруживается изменение состояния системы после ее вы-
полнения.

Задача уведомляет обработчик с именем, переданным ей в аргумен-
те. В предыдущем примере имя обработчика Restart nginx. Сервер NGINX
нужно перезапустить, если изменится любой из компонентов:

•	 ключ TLS;
•	 сертификат TLS;
•	 файл конфигурации;
•	 содержимое каталога sites-enabled.

78    Глава 3. Сценарии: начало

Мы добавляем инструкцию notify в каждую задачу, чтобы обеспечить
перезапуск NGINX, если выполняется одно из этих условий.

Несколько фактов об обработчиках,
которые необходимо помнить
Обработчики обычно выполняются после завершения всех задач и

только один раз, даже если было получено несколько уведомлений. Что-
бы запустить обработчик в середине операции, нужно добавить следу-
ющие две строки:

- name: Restart nginx
 meta: flush_handlers

Если сценарий содержит несколько обработчиков, то они всегда вы-
полняются в порядке следования в разделе handlers, а не в порядке по-
ступления уведомлений.

В официальной документации Ansible говорится, что обработчики в
основном используются для перезапуска служб и перезагрузки. Лорин
использует их исключительно для перезапуска служб – он считает та-
кой подход небольшой оптимизацией, когда службы перезапускаются
только один раз и при наличии изменений вместо безоговорочного
перезапуска всех служб в конце сценария, потому что перезапуск одной
службы обычно не занимает много времени. Но при перезапуске NGINX
есть риск повлиять на сеансы пользователей; уведомления обработчи-
ков помогают избежать ненужных перезапусков. Бас любит проверять
конфигурацию перед перезапуском, особенно если речь идет о крити-
чески важной службе, такой как sshd. Он всегда использует обработчи-
ки, уведомляющие другие обработчики.

Тестирование
Одна из проблем, связанных с обработчиками, заключается в том, что

они могут затруднять отладку сценариев. Проблема обычно разворачи-
вается примерно так:

•	 я запускаю сценарий;
•	 одна из задач с уведомлением изменяет состояние;
•	 в следующей задаче возникает ошибка, прерывающая работу

Ansible;
•	 я исправляю ошибку в сценарии;
•	 запускаю Ansible снова;
•	 ни одна из задач не сообщает об изменении состояния во второй

раз, Ansible не запускает обработчик.

Становимся знатоками: поддержка TLS    79

В таких случаях полезно включить тест в сценарий. В Ansible есть мо-
дуль uri, который может выполнять HTTPS-запросы для проверки рабо-
ты веб-сервера:

 - name: "Test it! https://localhost:8443/index.html"
 delegate_to: localhost
 become: false
 uri:
 url: 'https://localhost:8443/index.html'
 validate_certs: false
 return_content: true
 register: this
 failed_when: "'Running on ' not in this.content"

Проверка
Ansible замечательно умеет генерировать осмысленные сообщения

об ошибках, если вы забудете поставить кавычки в нужных местах и в
итоге получите недопустимый YAML, а yamlint помогает найти еще ме-
нее заметные проблемы. Кроме того, ansible-lint – это инструмент на
языке Python, помогающий находить потенциальные проблемы в сце-
нариях.

Обязательно проверяйте синтаксис Ansible ваших сценариев перед
запуском. Вот как можно это сделать:

$ ansible-playbook --syntax-check webservers-tls.yml
$ ansible-lint webservers-tls.yml
$ yamllint webservers-tls.yml
$ ansible-inventory --host testserver -i inventory/vagrant.ini
$ vagrant validate

Сценарий
Если вы следовали за примерами в этой главе, то теперь ваш сценарий

должен выглядеть, как показано в примере 3.9.

Пример 3-9. playbooks/webservers-tls.yml

- name: Configure webserver with Nginx and TLS
 hosts: webservers
 become: true
 gather_facts: false

 vars:
 tls_dir: /etc/nginx/ssl/

80    Глава 3. Сценарии: начало

 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

 handlers:
 - name: Restart nginx
 service:
 name: nginx
 state: restarted

 tasks:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true
 notify: Restart nginx

 - name: Create directories for TLS certificates
 file:
 path: "{{ tls_dir }}"
 state: directory
 mode: '0750'
 notify: Restart nginx

 - name: Copy TLS files
 copy:

 src: "{{ item }}"
 dest: "{{ tls_dir }}"
 mode: '0600'
 loop:
 - "{{ key_file }}"
 - "{{ cert_file }}"
 notify: Restart nginx

 - name: Manage nginx config template
 template:
 src: nginx.conf.j2
 dest: "{{ conf_file }}"
 mode: '0644'
 notify: Restart nginx

 - name: Enable configuration
 file:
 src: /etc/nginx/sites-available/default
 dest: /etc/nginx/sites-enabled/default

Становимся знатоками: поддержка TLS    81

 state: link

 - name: Install home page
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html
 mode: '0644'

 - name: Restart nginx
 meta: flush_handlers

 - name: "Test it! https://localhost:8443/index.html"
 delegate_to: localhost
 become: false
 uri:
 url: 'https://localhost:8443/index.html'
 validate_certs: false
 return_content: true
 register: this
 failed_when: "'Running on ' not in this.content"
 tags:
 - test
...

Запуск сценария
Запуск сценария выполняется командой ansible-playbook:

$ ansible-playbook webservers-tls.yml

Вывод должен выглядеть примерно так:

PLAY [Configure webserver with Nginx and TLS] **********************************

TASK [Ensure nginx is installed] ***
ok: [testserver]

TASK [Create directories for TLS certificates] *********************************
changed: [testserver]

TASK [Copy TLS files] **
changed: [testserver] => (item=nginx.key)
changed: [testserver] => (item=nginx.crt)

TASK [Manage nginx config template] **
changed: [testserver]

TASK [Install home page] ***

82    Глава 3. Сценарии: начало

ok: [testserver]

RUNNING HANDLER [Restart nginx] **
changed: [testserver]

TASK [Test it! https://localhost:8443/index.html] ******************************
ok: [testserver]

PLAY RECAP ***
testserver : ok=7 changed=4 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Откройте в браузере страницу https://localhost:8443 (не забудьте «s»
в конце https). Если вы используете Chrome, то, как и я, получите не-
приятное сообщение о том, что «установленное соединение не защи-
щено» (рис. 3.3).

Рис. 3.3. Некоторые браузеры, такие как Chrome,
не доверяют «самоподписанным» сертификатам TLS

Не беспокойтесь. Ошибка ожидаема, поскольку мы создали «само-
подписанный» сертификат TLS. А такие браузеры, как Chrome, доверя-
ют только сертификатам, выпущенным доверенным центром сертифи-
кации.

Заключение    83

Shebang

Когда в Unix-подобной операционной системе текстовый
файл имеет разрешение на выполнение, то мы называем его
сценарием. Если первая строка в файле начинается с двух
символов #!, то механизм загрузки программы интерпрети-
рует оставшуюся часть первой строки как директиву, опреде-
ляющую интерпретатор, который следует вызвать для обра-
ботки сценария. Он запустит интерпретатор и передаст ему
сценарий как аргумент. Мы изменили разрешения для на-
шего сценария (webservers-tls.yml), объявив содержащий его
файл выполняемым, и запустили файл со следующей строкой
shebang. (Символ # без ! – это просто комментарий.)

#!/usr/bin/env ansible-playbook
Этот сценарий теперь будет выполняться с помощью ansible-playbook.

Заключение
В этой главе мы изучили многое из того, что делает Ansible с хостами.
Обработчики – лишь одна из форм управления потоком выполнения,
поддерживаемых в Ansible. В главе 9 мы рассмотрим циклическое и ус-
ловное выполнение задач на основе значений переменных. В следую-
щей главе мы также поговорим об аспекте кто. Другими словами, как
описать хосты, на которых должны выполняться сценарии.

Глава 4
Реестр: описание серверов

До настоящего момента мы рассматривали работу лишь с одним серве-
ром (или хостом в терминологии Ansible). Реестр в простейшем виде –
это список имен хостов, перечисленных через запятую, который может
даже не содержать внешних серверов:

$ ansible all -i 'localhost,' -a date

В действительности вам предстоит управлять многими хостами.
Группа хостов, данными о которых располагает Ansible, называется ре-
естром (inventory). В этой главе вы узнаете, как составить реестр, опи-
сывающий группу хостов.

В настоящий момент наш файл ansible.cfg должен выглядеть, как по-
казано в примере 4.1, и включать все плагины поддержки реестра.

Пример 4.1. ansible.cfg

[defaults]
inventory = inventory

[inventory]
enable_plugins = host_list, script, auto, yaml, ini, toml

В этой главе все примеры реестров мы будем сохранять в каталоге
inventory. Реестр Ansible – очень гибкий объект: это может быть тексто-
вый файл (в нескольких форматах), каталог или выполняемый файл,
причем некоторые выполняемые файлы поставляются в виде плагинов.
Плагины поддержки реестра позволяют указать источник данных, на-
пример поставщика облачных услуг, для составления реестра.

Серж ван Гиндерахтер (Serge van Ginderachter) – самый авто-
ритетный специалист по реестрам Ansible. Мы настоятельно
рекомендуем почитать его блог (https://oreil.ly/tUABr).

https://oreil.ly/tUABr

Вводная часть: несколько машин Vagrant    85

Реестр может храниться отдельно от сценариев Ansible. Это означа-
ет, что можно создать единый каталог реестров для использования с
Ansible в командной строке, содержащих хосты, работающих в Vagrant,
Amazon EC2, Google Cloud Platform, Microsoft Azure и вообще где угодно!

Файл реестра
Самый простой способ описать имеющиеся хосты – перечислить их в
текстовом файле, который принято называть файлом реестра хостов.
В простейшем случае реестр – это файл hosts, содержащий список имен
хостов, как показано в примере 4.2.

Пример 4.2. Простейший файл реестра

frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com

Система Ansible автоматически добавляет в реестр хост localhost. Она
понимает, что имя localhost ссылается на локальную машину, поэтому бу-
дет взаимодействовать с ней напрямую, минуя SSH-соединение.

Вводная часть: несколько машин Vagrant
Для обсуждения приемов работы с реестром нам потребуется несколь-
ко хостов. Давайте настроим в Vagrant три хоста и назовем их vagrant1,
vagrant2 и vagrant3.

Прежде чем вносить изменения в файл Vagrantfile, не забудьте уда-
лить существующую виртуальную машину, выполнив команду:

$ vagrant destroy --force

Если запустить эту команду без флага --force, то Vagrant предложит
подтвердить удаление каждой виртуальной машины из перечисленных
в Vagrantfile.

После этого измените файл Vagrantfile, как показано в примере 4.3.

Пример 4.3. Vagrantfile с тремя серверами

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Использовать один и тот же ключ для всех машин
 config.ssh.insert_key = false

86    Глава 4. Реестр: описание серверов

 config.vm.define "vagrant1" do |vagrant1|
 vagrant1.vm.box = "ubuntu/focal64"
 vagrant1.vm.network "forwarded_port", guest: 80, host: 8080
 vagrant1.vm.network "forwarded_port", guest: 443, host: 8443
 end
 config.vm.define "vagrant2" do |vagrant2|
 vagrant2.vm.box = "ubuntu/focal64"
 vagrant2.vm.network "forwarded_port", guest: 80, host: 8081
 vagrant2.vm.network "forwarded_port", guest: 443, host: 8444
 end
 config.vm.define "vagrant3" do |vagrant3|
 vagrant3.vm.box = "centos/stream8"
 vagrant3.vm.network "forwarded_port", guest: 80, host: 8082
 vagrant3.vm.network "forwarded_port", guest: 443, host: 8445
 end
end

Начиная с версии 1.7, Vagrant по умолчанию использует для каждого
хоста свой SSH-ключ. В примере 4.3 присутствует строка, которая воз-
вращает Vagrant к использованию одного SSH-ключа для всех хостов:

config.ssh.insert_key = false

Использование одного и того же ключа для всех хостов упрощает на-
стройку Ansible, поскольку в этом случае требуется указать в конфигу-
рации только один SSH-ключ.

Теперь предположим, что каждый из этих серверов потенциально
может быть веб-сервером, поэтому в примере 4.3 порты 80 и 443 на каж
дой машине Vagrant отображены в порты локальной машины.

Виртуальные машины запускаются командой:

$ vagrant up

Если все в порядке, она выведет следующее:

Bringing machine 'vagrant1' up with 'virtualbox' provider...
Bringing machine 'vagrant2' up with 'virtualbox' provider...
Bringing machine 'vagrant3' up with 'virtualbox' provider...
...
 vagrant1: 80 (guest) => 8080 (host) (adapter 1)
 vagrant1: 443 (guest) => 8443 (host) (adapter 1)
 vagrant1: 22 (guest) => 2222 (host) (adapter 1)
==> vagrant1: Running 'pre-boot' VM customizations...
==> vagrant1: Booting VM...
==> vagrant1: Waiting for machine to boot. This may take a few minutes...
 vagrant1: SSH address: 127.0.0.1:2222
 vagrant1: SSH username: vagrant
 vagrant1: SSH auth method: private key

Вводная часть: несколько машин Vagrant    87

==> vagrant1: Machine booted and ready!
==> vagrant1: Checking for guest additions in VM...
==> vagrant1: Mounting shared folders...
 vagrant1: /vagrant => /Users/bas/code/ansible/ansiblebook/ansiblebook/ch03

Далее давайте посмотрим, какие порты локальной машины отобра-
жены в порт SSH (22) каждой виртуальной машины. Напомним, что эти
данные можно получить командой:

$ vagrant ssh-config

Результат должен выглядеть примерно так:

Host vagrant1
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL
Host vagrant2
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL
Host vagrant3
 HostName 127.0.0.1
 User vagrant
 Port 2201
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Большая часть информации в выводе ssh-config повторяется, и ее мож-
но сократить. Отличаются только номера портов на локальной машине,
в которые отображаются порты виртуальных машин. Так, для vagrant1
используется порт 2222, для vagrant2 – порт 2200 и для vagrant3 – порт 2201.

88    Глава 4. Реестр: описание серверов

По умолчанию Ansible использует локального клиента SSH, т. е. она бу-
дет понимать любые псевдонимы, настроенные в файле конфигурации
SSH. Поэтому мы используем подстановочный знак в файле ~/.ssh/config:

Host vagrant*
 Hostname 127.0.0.1
 User vagrant
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile ~/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Измените файл hosts, как показано ниже:

vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

Теперь проверим доступность этих машин. Например, получить ин-
формацию о сетевом интерфейсе в vagrant2 можно командой:

$ ansible vagrant2 -a "ip addr show dev enp0s3"

Она должна вывести примерно следующее:

vagrant2 | CHANGED | rc=0 >>
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
group default qlen 1000
 link/ether 02:1e:de:45:2c:c8 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
 valid_lft 86178sec preferred_lft 86178sec
 inet6 fe80::1e:deff:fe45:2cc8/64 scope link
 valid_lft forever preferred_lft forever

Поведенческие параметры хостов в реестре
Для описания машин Vagrant в файле реестра Ansible необходимо явно
указать порт (2222, 2200 или 2201), к которому будет подключаться SSH-
клиент системы Ansible. В Ansible эти переменные называются поведен-
ческими параметрами (behavioral parameters). Некоторые из них можно
использовать для изменения значений по умолчанию (табл. 4.1).

Таблица 4.1. Поведенческие параметры

Имя Значение
по умолчанию Описание

ansible_host Имя хоста Имя хоста или IP-адрес

ansible_port 22 Порт для подключения по протоколу SSH

Поведенческие параметры хостов в реестре    89

Имя Значение
по умолчанию Описание

ansible_user $USER Пользователь для подключения по прото-
колу SSH

ansible_password (нет) Пароль для подключения по протоколу SSH

ansible_connection smart Как Ansible будет подключаться к хосту (см.
следующий раздел)

ansible_ssh_private_key_file (нет) Закрытый SSH-ключ для аутентификации по
протоколу SSH

ansible_shell_type sh Командная оболочка для выполнения ко-
манд (см. следующий раздел)

ansible_python_interpreter /usr/bin/python Путь к интерпретатору Python на хосте (см.
следующий раздел)

ansible_*_interpreter (нет) Аналоги ansible_python_interpreter для дру-
гих языков (см. следующий раздел)

Назначение некоторых параметров очевидно из их названий, другие
требуют дополнительных пояснений.

ansible_connection

	 Ansible поддерживает несколько транспортов – механизмов под-
ключения к хостам. По умолчанию используется транспорт smart.
Он проверяет поддержку локальным SSH-клиентом функции Con-
trolPersist. Если SSH-клиент поддерживает ее, то Ansible будет ис-
пользовать локального SSH-клиента. Если локальный клиент не
поддерживает ControlPersist, тогда транспорт smart будет использо-
вать библиотеку SSH-клиента на Python с названием Paramiko.

ansible_shell_type

	 Ansible устанавливает SSH-соединения с удаленными машинами
и затем запускает на них сценарии. По умолчанию Ansible счита-
ет, что на удаленных машинах используется командная оболочка
Bourne Shell, доступная как /bin/sh, и создает параметры команд-
ной строки, соответствующие оболочке Bourne Shell.

	 В этом параметре можно также передать значение csh, fish или
powershell (при работе с Windows). При этом имейте в виду, что
Ansiblу не поддерживает ограниченные командные оболочки.

ansible_python_interpreter

	 Модули, входящие в состав Ansible, реализованы на Python, поэто-
му Ansible должна знать местоположение интерпретатора Python
на удаленной машине. Вам может потребоваться изменить эту
переменную, чтобы указать путь к требуемой версии интерпре-

90    Глава 4. Реестр: описание серверов

татора. Самый простой способ запустить Ansible под управлени-
ем Python 3 – установить ее с помощью pip3 и настроить данный
параметр, как показано ниже:

						 ansible_python_interpreter="/usr/bin/env python3"

ansible_*_interpreter

	 Если вы собираетесь использовать нестандартные модули, напи-
санные не на Python, используйте этот параметр, чтобы опреде-
лить путь к интерпретатору (например, /usr/bin/ruby). Подробнее
об этом мы поговорим в главе 12.

Переопределение значений по умолчанию
в поведенческих параметрах
Переопределить значения по умолчанию некоторых поведенческих

параметров можно в секции [defaults] файла ansible.cfg (табл. 4.2). Поду-
майте, где лучше сделать это. Являются ли изменения личным выбором
или они касаются всей вашей команды? Потребуется ли часть вашего
реестра для настройки другого окружения? Напомним, что настроить
параметры SSH можно в файле ~/.ssh/config.

Таблица 4.2. Значения по умолчанию, которые можно изменить в ansible.cfg

Поведенческий параметр Параметр в файле ansible.cfg

ansible_port remote_port

ansible_user remote_user

ansible_ssh_private_key_file ssh_private_key_file

ansible_shell_type executable (см. следующий абзац)

Параметр executable в файле ansible.cfg не совсем то же самое, что по-
веденческий параметр ansible_shell_type. Параметр executable определяет
полный путь к используемой командной оболочке на удаленной ма-
шине (например, /usr/local/bin/fish). Ansible выбирает имя в конце этого
пути (для /usr/local/bin/fish это будет имя fish) и использует его как зна-
чение по умолчанию для ansible_shell_type.

Группы, группы и еще раз группы
Занимаясь настройками, мы обычно совершаем действия не с одним
хостом, а с их группой. Ansible автоматически определяет группу all
(или *). Она включает все хосты, перечисленные в реестре. Например,
мы можем примерно оценить синхронность хода часов на машинах с
помощью команды:

Группы, группы и еще раз группы    91

$ ansible all -a "date"

или

$ ansible '*' -a "date"

На компьютере Баса она вывела следующее:

vagrant2 | CHANGED | rc=0 >>
Wed 12 May 2021 01:37:47 PM UTC
vagrant1 | CHANGED | rc=0 >>
Wed 12 May 2021 01:37:47 PM UTC
vagrant3 | CHANGED | rc=0 >>
Wed 12 May 2021 01:37:47 PM UTC

В файле реестра можно определять свои группы. Файлы реестра в
Ansible оформляются в формате .ini, в котором параметры группиру-
ются в секции.

Вот как можно объединить в группу vagrant наши Vagrant-хосты наря-
ду с другими хостами из примера, приводившегося в начале главы:

frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com

[vagrant]
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

Также можно было бы перечислить Vagrant-хосты в начале файла и
потом объединить их в группу:

frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

92    Глава 4. Реестр: описание серверов

[vagrant]
vagrant1
vagrant2
vagrant3

Группы можно определять, как вам заблагорассудится: они могут пе-
ресекаться или быть вложенными. Порядок следования групп не имеет
значения, главный критерий – удобочитаемость.

Пример: развертывание приложения Django
Представьте, что вы отвечаете за развертывание веб-приложения, ре-

ализованного на основе фреймворка Django и выполняющего продол-
жительные операции. Чтобы развернуть приложение, на хосте должны
также присутствовать:

•	 последняя версия самого веб-приложения Django, выполняемого
HTTP-сервером Gunicorn;

•	 веб-сервер NGINX, находящийся перед сервером Gunicorn и об-
служивающий статические ресурсы;

•	 очередь задач Celery, выполняющая продолжительные операции
от лица веб-сервера;

•	 диспетчер очередей сообщений RabbitMQ, обеспечивающий ра-
боту Celery;

•	 база данных Postgres, используемая в качестве хранилища.

В последующих главах мы подробно рассмотрим пример разверты-
вания Django-приложения такого типа. Но в том примере не будут ис-
пользоваться Celery и RabbitMQ. Также представьте, что данное прило-
жение необходимо развернуть в разных окружениях: промышленном
(для реального использования), тестовом (для тестирования на хостах,
к которым члены нашей команды имеют доступ) и в Vagrant (для ло-
кального тестирования).

В промышленном окружении необходимо обеспечить быстрый и на-
дежный отклик системы, поэтому мы:

•	 запустим веб-приложение на нескольких хостах и поставим пе-
ред ними балансировщик нагрузки;

•	 запустим серверы очередей задач на нескольких хостах;
•	 установим Gunicorn, Celery, RabbitMQ и Postgres на отдельных

серверах;
•	 используем два хоста для размещения основной базы данных

Postgres и ее копии.

Группы, группы и еще раз группы    93

Допустим, что у нас имеются один балансировщик нагрузки, три
веб-сервера, три очереди задач, один сервер RabbitMQ и два сервера баз
данных, т. е. всего 10 хостов (рис. 4.1).

Рис. 4.1. Десять хостов, на которых предполагается
развернуть приложение Django

Представим также, что в окружении для обкатки (staging) мы решили
использовать меньше хостов, чем в промышленном окружении. Это по-
зволит сократить издержки, поскольку нагрузка на окружение обкатки
будет существенно ниже. Допустим, мы решили настроить в тестовом
окружении всего два хоста. Мы установим веб-сервер и диспетчер оче-
реди задач на один хост, а RabbitMQ и Postgres – на другой.

В локальном окружении Vagrant мы решили использовать три серве-
ра: один – для веб-приложения, второй – для диспетчера очереди задач,
третий – для установки RabbitMQ и Postgres.

Интернет

Балан-
сировщик
нагрузки

Основная
БД Postgres

Копия БД
Postgres

94    Глава 4. Реестр: описание серверов

В примере 4.4 представлен вариант возможного файла реестра, в ко-
тором наши серверы сгруппированы по принадлежности к окружению
(промышленному, тестовому, Vagrant) и по функциональности (веб-сер-
вер, диспетчер очереди задач и т. д.).

Пример 4.4. Файл реестра для развертывания приложения Django

[production]
frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com
tokyo.example.com
toronto.example.com

[staging]
amsterdam.example.com
chicago.example.com

[lb]
helsinki.example.com

[web]
amsterdam.example.com
seoul.example.com
sydney.example.com
toronto.example.com
vagrant1

[task]
amsterdam.example.com
hongkong.example.com
johannesburg.example.com
newyork.example.com
vagrant2

[rabbitmq]
chicago.example.com
tokyo.example.com
vagrant3

[db]
chicago.example.com
frankfurt.example.com
london.example.com
vagrant3

Группы, группы и еще раз группы    95

Мы могли бы сначала перечислить все серверы в начале файла, не
определяя группы, но в этом нет необходимости, и это сделало бы файл
только длиннее.

Обратите внимание, что нам понадобилось только один раз указать
поведенческие параметры для экземпляров Vagrant.

Псевдонимы и порты
Мы описали наши хосты Vagrant так:

[vagrant]
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

Имена vagrant1, vagrant2, vagrant3 – это псевдонимы. Они не настоящие
имена серверов, но их удобно использовать для обозначения хостов.
Разрешение имен в Ansible осуществляется с использованием реестра,
конфигурационного файла SSH, файла /etc/hosts и DNS. Эта гибкость по-
лезна при разработке, но может вызвать путаницу.

Ansible поддерживает синтаксис <hostname>:<port> описания хос
тов. То есть строку с описанием vagrant1 можно заменить объявлени-
ем 127.0.0.1:2222 (пример 4.5).

Пример 4.5. Этот реестр не работает

[vagrant]
127.0.0.1:2222
127.0.0.1:2200
127.0.0.1:2201

Однако нам не удастся задействовать гипотетический реестр, пред-
ставленный в примере 4.5, потому что с IP-адресом 127.0.0.1 можно
определить только один хост, поэтому группа vagrant в этом случае мо-
жет содержать лишь один хост.

Группировка групп
Ansible позволяет также определять группы, состоящие из других

групп. Например, на веб-серверы и на серверы очередей требуется уста-
новить фреймворк Django и его зависимости. Поэтому будет полезно
определить группу django, включающую обе вышеуказанные группы. Для
этого достаточно добавить следующие строки в файл реестра:

[django:children]
web
task

96    Глава 4. Реестр: описание серверов

Обратите внимание, что для определения группы групп используется
другой синтаксис, отличный от синтаксиса определения группы хостов.
Благодаря этому Ansible поймет, что web и task – это группы, а не хосты.

Имена хостов с номерами
(домашние питомцы и стадо)
Файл реестра в примере 4.4 выглядит достаточно сложным. На самом

деле он описывает всего лишь 15 разных хостов. А это количество не
так уж и велико в нашем облачном безразмерном мире. Тем не менее
даже 15 хостов в файле реестра могут вызывать затруднения, потому
что каждый хост имеет свое, уникальное имя.

Билл Бейкер (Bill Baker) из Microsoft выделил отличительные особен-
ности управления серверами, которые интерпретируются как домаш-
ние питомцы и как стадо1. Своим домашним питомцам мы даем отли-
чительные имена и работаем с ними в индивидуальном порядке, но
животных в стаде мы часто идентифицируем по их номерам.

Подход к именованию серверов с использованием нумерации более
масштабируемый, и Ansible с легкостью поддерживает его посредством
числовых шаблонов. Например, если у вас имеется 20 серверов с имена-
ми web1.example.com, web2.example.com и т. д., то вы можете описать их
в файле реестра так:

[web]
web[1:20].example.com

Если вы предпочитаете использовать ведущие нули (например, web01.
example.com), укажите их в определении диапазона :

[web]
web[01:20].example.com

Ansile поддерживает также возможность определения диапазонов
букв. Если вы предпочитаете использовать условные обозначения
web-a.example.com, web-b.example.com и т. д., тогда поступите так (для тех
же 20 серверов):

[web]
web-[a-t].example.com

Переменные хостов и групп: внутренняя
сторона реестра
Вспомните, как мы определили поведенческие параметры для хостов
Vagrant:
1	 Этот термин предложил Рэнди Биас (Randy Bias) из Cloudscaling (https://oreil.ly/Zsvdf).

https://oreil.ly/Zsvdf

Переменные хостов и групп: внутренняя сторона реестра    97

vagrant1 ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

Эти параметры являются переменными, имеющими особое значение
для Ansible. Точно так же можно задать переменные с произвольными
именами и соответствующие значения для разных хостов. Например,
можно определить переменную color и присвоить ей уникальное значе-
ние для каждого сервера:

amsterdam.example.com color=red
seoul.example.com color=green
sydney.example.com color=blue
toronto.example.com color=purple

Эту переменную затем можно использовать в сценарии как любую
другую. Авторы книги редко закрепляют переменные за отдельными
хостами, но часто связывают переменные с группами.

В примере с Django веб-приложению и диспетчеру очереди необхо-
димо взаимодействовать с RabbitMQ и Postgres. Предположим, доступ
к базе данных Postgres защищен на сетевом уровне (только веб-прило-
жение и диспетчер очереди задач могут использовать базу данных) и на
уровне учетных данных. Доступ к RabbitMQ защищен при этом только
на сетевом уровне.

Для приведения такой системы в рабочее состояние необходимо на-
строить:

•	 на веб-серверах: имя хоста, порт, имя пользователя и пароль ос-
новного сервера Postgres, а также имя базы данных;

•	 на сервере диспетчера очереди: имя хоста, порт, имя пользовате-
ля и пароль основного сервера Postgres, а также имя базы данных;

•	 на веб-серверах: имя хоста и порт сервера RabbitMQ;
•	 на сервере диспетчера очереди: имя хоста и порт сервера

RabbitMQ;
•	 на основном сервере Postgres: имя хоста, порт, имя пользователя

и пароль сервера копии базы данных Postgres (только в промыш-
ленном окружении).

Информация о конфигурации зависит от окружения, поэтому име-
ет смысл определить групповые переменные для промышленной,
тестовой и Vagrant групп. В примере 4.6 показан один из вариантов
объявления этой информации в виде переменных групп в файле ре-
естра. (В главе 8 будет показан более удачный способ хранения па-
ролей.)

98    Глава 4. Реестр: описание серверов

Пример 4.6. Определение переменных групп в реестре

[all:vars]
ntp_server=ntp.ubuntu.com
[production:vars]
db_primary_host=frankfurt.example.com
db_primary_port=5432
db_replica_host=london.example.com
db_name=widget_production
db_user=widgetuser
db_password=pFmMxcyD;Fc6)6
rabbitmq_host=johannesburg.example.com
rabbitmq_port=5672

[staging:vars]
db_primary_host=chicago.example.com
db_primary_port=5432
db_name=widget_staging
db_user=widgetuser
db_password=L@4Ryz8cRUXedj
rabbitmq_host=chicago.example.com
rabbitmq_port=5672

[vagrant:vars]
db_primary_host=vagrant3
db_primary_port=5432
db_name=widget_vagrant
db_user=widgetuser
db_password=password
rabbitmq_host=vagrant3
rabbitmq_port=5672

Обратите внимание, что переменные групп объединяются в секции
с именами [<имя группы>:vars]. Также отметьте, что мы воспользовались
группой all, которую Ansible создает автоматически, чтобы определить
переменные для всех хостов.

Переменные хостов и групп: создание
собственных файлов
Если у вас не слишком много хостов, переменные можно поместить в
файл реестра. Но с увеличением объема информации становится все
сложнее управлять переменными таким способом. Кроме того, хотя
переменные Ansible могут хранить логические и строковые значения,
списки и словари, в файле реестра допускается задавать только логиче-
ские и строковые значения.

Переменные хостов и групп: создание собственных файлов    99

Ansible поддерживает более масштабируемый подход к управлению
переменными. Вы можете создать отдельный файл с переменными
для каждого хоста и каждой группы. Такие файлы переменных должны
иметь формат YAML.

Ansible проверяет наличие файлов переменных хостов в каталоге
host_vars и файлов переменных групп в каталоге group_vars. Эти ката-
логи должны находиться в каталоге со сценарием или в каталоге с рее-
стром. Если имеются оба каталога, то каталог со сценарием просматри-
вается первым, а каталог с реестром – вторым.

К примеру, допустим, что Лорин хранит сценарии в каталоге /home/
lorin/playbooks/, а файл реестра – в каталоге /home/lorin/inventory/hosts,
тогда он должен был бы сохранить переменные для хоста amsterdam.
example.com в файле /home/lorin/inventory/host_vars/amsterdam.example.
com, а переменные для группы хостов в промышленном окружении –
в файле /home/lorin/inventory/group_vars/production (пример 4.7).

Пример 4.7. group_vars/production

db_primary_host: frankfurt.example.com
db_primary_port: 5432
db_replica_host: london.example.com
db_name: widget_production
db_user: widgetuser
db_password: 'pFmMxcyD;Fc6)6'
rabbitmq_host: johannesburg.example.com
rabbitmq_port: 5672
...

Для представления этих значений также можно использовать слова-
ри YAML, как показано в примере 4.8.

Пример 4.8. group_vars/production, со словарями

db:
 user: widgetuser
 password: 'pFmMxcyD;Fc6)6'
 name: widget_production
 primary:
 host: frankfurt.example.com
 port: 5432
 replica:
 host: london.example.com
 port: 5432
rabbitmq:
 host: johannesburg.example.com

100    Глава 4. Реестр: описание серверов

 port: 5672
...

При использовании словарей YAML доступ к переменным должен
производиться с помощью точечной нотации:

"{{ db.primary.host }}"

Также к переменным в словаре можно обращаться так:

"{{ db['primary']['host'] }}"

Сравните эти два приема с тем, как мы должны были бы обращаться
к переменным в противном случае:

"{{ db_primary_host }}"

При желании можно продолжить разбивку информации. Ansible по-
зволяет определить group_vars/production как каталог и поместить сюда
несколько файлов YAML с определениями переменных. Например, пе-
ременные, описывающие базу данных, можно поместить в один файл,
а переменные, описывающие RabbitMQ, – в другой, как показано в при-
мерах 4.9 и 4.10.

Пример 4.9. group_vars/production/db

db:
 user: widgetuser
 password: 'pFmMxcyD;Fc6)6'
 name: widget_production
 primary:
 host: frankfurt.example.com
 port: 5432
 replica:
 host: london.example.com
 port: 5432
...

Пример 4.10. group_vars/production/rabbitmq

rabbitmq:
 host: johannesburg.example.com
 port: 6379
...

В общем и целом лучше не усложнять и не разбивать переменные на
слишком большое количество файлов. Однако в больших командах и
проектах ценность отдельных файлов возрастает, так как многим мо-
жет потребоваться извлекать и работать с файлами одновременно.

Динамический реестр    101

Динамический реестр
До настоящего момента мы явно описывали наши хосты в файле реест
ра. Однако вам может понадобиться хранить всю информацию о хостах
во внешней системе. Например, если хосты располагаются в облаке
Amazon EC2, то вся информация о них будет храниться в EC2, и вы смо-
жете извлекать ее посредством веб-интерфейса EC2, Query API или с
помощью инструмента командной строки, такого как awscli. Другие об-
лачные провайдеры поддерживают похожие интерфейсы.

Если вы управляете своими собственными серверами, используя
автоматизированную систему инициализации, такую как Cobbler или
Ubuntu Metal as a Service (MAAS), то она уже отслеживает ваши серве-
ры. Или, может быть, вся ваша информация хранится в одной из тех
причудливых баз данных управления конфигурациями (Configuration
Management DataBases, CMDB).

В этом случае вам не придется вручную копировать информацию
в файл реестра, поскольку в конечном счете этот файл не будет соот-
ветствовать содержимому внешней системы – подлинного источника
данных о ваших хостах. Ansible поддерживает функцию динамического
реестра, которая позволяет избежать копирования.

Если файл реестра отмечен как выполняемый, то Ansible будет интер-
претировать его как сценарий динамического реестра и запускать его
вместо чтения.

Сделать файл выполняемым можно командой chmod +x.
Например:

$ chmod +x vagrant.py *

Плагины поддержки реестров
В состав Ansible входит несколько выполняемых файлов, которые

могут подключаться к различным облачным системам при условии, что
вы установите все необходимое ПО и настроите аутентификацию. Этим
плагинам обычно требуется конфигурационный файл YAML в каталоге
inventory, а также некоторые переменные окружения или файлы аутен-
тификации.

Получить список доступных плагинов можно командой:

$ ansible-doc -t inventory -l

А документацию с описанием конкретного плагина – командой:

$ ansible-doc -t inventory <имя плагина>

102    Глава 4. Реестр: описание серверов

Амазон EC2
Если вы используете Amazon EC2, то установите необходимые зави-

симости:

$ pip3 install boto3 botocore

Создайте файл inventory/aws_ec2.yml, содержащий хотя бы одну строку:

plugin: aws_ec2

Диспетчер ресурсов Azure
Установите следующие зависимости в виртуальное окружение Python

(virtualenv) с Ansible 2.9.xx:

$ pip3 install msrest msrestazure

Создайте файл inventory/azure_rm.yml, содержащий хотя бы следую-
щие строки:

plugin: azure_rm
platform: azure_rm
auth_source: auto
plain_host_names: true

Интерфейс сценария динамического реестра
Сценарий динамического реестра должен поддерживать два парамет

ра командной строки:

•	 --host=<имя хоста> для вывода информации о хостах;
•	 --list для вывода информации о группах.

Также он должен возвращать вывод в формате JSON со структурой,
которую Ansible сможет проанализировать.

Вывод информации о хосте
Чтобы получить данные о конкретном хосте, Ansible вызывает сцена-

рий динамического реестра с аргументом --host=:

$ ansible-inventory -i inventory/hosts --host=vagrant2

В составе Ansible имеется сценарий ansible-inventory, который
действует как сценарий динамического реестра, но извлека-
ет информацию из статического реестра, переданного в ар-
гументе командной строки -i.

Динамический реестр    103

Вывод сценария должен содержать переменные для заданного хоста,
включая поведенческие параметры, например:

{
 "ansible_host": "127.0.0.1",
 "ansible_port": 2200,
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_user": "vagrant"
}

Результаты выводятся в виде объекта JSON, имена свойств в котором
соответствуют именам переменных, а значения – значениям этих пе-
ременных.

Вывод списка членов групп
Сценарий динамического реестра должен уметь выводить списки

членов всех групп, а также данные об отдельных хостах. В репозитории
GitHub (https://oreil.ly/vseIj) с примерами для этой книги есть сценарий рее-
стра для хостов Vagrant, который называется vagrant.py. Чтобы получить
содержимое всех групп, Ansible вызовет его командой:

$./vagrant.py --list

Результат должен выглядеть так:

{"vagrant": ["vagrant1", "vagrant2", "vagrant3"]}

Результат выводится в виде единого объекта JSON, имена свойств в
котором соответствуют именам групп, а значения – это массивы с име-
нами хостов.

Для оптимизации команда --list должна поддерживать вывод всех
переменных всех хостов. Это освобождает Ansible от необходимости
повторно вызывать сценарий с параметром --host, чтобы получить пе-
ременные отдельных хостов.

Для этого команда --list должна возвращать ключ _meta с переменны-
ми всех хостов, как показано ниже:

"_meta": {
 "hostvars": {
 "vagrant1": {
 "ansible_user": "vagrant",
 "ansible_host": "127.0.0.1",
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_port": "2222"
 },
 "vagrant2": {
 "ansible_user": "vagrant",
 "ansible_host": "127.0.0.1",

https://oreil.ly/vseIj

104    Глава 4. Реестр: описание серверов

 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_port": "2200"
 },
 "vagrant3": {
 "ansible_user": "vagrant",
 "ansible_host": "127.0.0.1",
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_port": "2201"
 }
 }

Написание сценария динамического реестра
Одной из удобных функций Vagrant является возможность получить

список запущенных виртуальных машин командой vagrant status. Допу-
стим, у нас имеется файл Vagrantfile, как показано в примере 4.3. Если
запустить команду vagrant status, то результат будет выглядеть, как в
примере 4.11:

Пример 4.11. Вывод команды vagrant status

$ vagrant status
Current machine states:

vagrant1 running (virtualbox)
vagrant2 running (virtualbox)
vagrant3 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run 'vagrant status NAME'.

Поскольку Vagrant уже хранит информацию о состоянии машин, нет
необходимости вносить их список в файл реестра. Вместо этого мож-
но написать сценарий динамического реестра, который запрашивает у
Vagrant данные о запущенных на данный момент машинах. В этом слу-
чае нам не нужно будет вносить обновления в файл реестра, даже если
число машин в Vagrantfile изменится.

Рассмотрим пример создания сценария динамического реестра, ко-
торый извлекает данные о хостах из Vagrant. Наш сценарий будет по-
лучать необходимую информацию, выполняя команду vagrant status. Ее
вывод, который приводится в примере 4.11, предназначен для людей,
а не машин. Чтобы получить список запущенных хостов в формате,
подходящем для анализа машиной, нужно добавить в команду пара-
метр --machine-readable:

$ vagrant status --machine-readable

Динамический реестр    105

Результат выглядит так:

1620831617,vagrant1,metadata,provider,virtualbox
1620831617,vagrant2,metadata,provider,virtualbox
1620831618,vagrant3,metadata,provider,virtualbox
1620831619,vagrant1,provider-name,virtualbox
1620831619,vagrant1,state,running
1620831619,vagrant1,state-human-short,running
1620831619,vagrant1,state-human-long,The VM is running. To stop this
VM%!(VAGRANT_COMMA) you can run `vagrant halt` to\nshut it down
forcefully%!(VAGRANT_COMMA) or you can run `vagrant suspend` to
simply\nsuspend the virtual machine. In either case%!(VAGRANT_COMMA)
to restart it again%!(VAGRANT_COMMA)\nsimply run `vagrant up`.
1620831619,vagrant2,provider-name,virtualbox
1620831619,vagrant2,state,running
1620831619,vagrant2,state-human-short,running
1620831619,vagrant2,state-human-long,The VM is running. To stop this
VM%!(VAGRANT_COMMA) you can run `vagrant halt` to\nshut it down
forcefully%!(VAGRANT_COMMA) or you can run `vagrant suspend` to
simply\nsuspend the virtual machine. In either case%!(VAGRANT_COMMA)
to restart it again%!(VAGRANT_COMMA)\nsimply run `vagrant up`.
1620831620,vagrant3,provider-name,virtualbox
1620831620,vagrant3,state,running
1620831620,vagrant3,state-human-short,running
1620831620,vagrant3,state-human-long,The VM is running. To stop this
VM%!(VAGRANT_COMMA) you can run `vagrant halt` to\nshut it down
forcefully%!(VAGRANT_COMMA) or you can run `vagrant suspend` to
simply\nsuspend the virtual machine. In either case%!(VAGRANT_COMMA)
to restart it again%!(VAGRANT_COMMA)\nsimply run `vagrant up`.
1620831620,,ui,info,Current machine states:\n\nvagrant1
running (virtualbox)\nvagrant2 running (virtualbox)\nvagrant3
running (virtualbox)\n\nThis environment represents multiple VMs. The VMs
are all listed\nabove with their current state. For more information about
a specific\nVM%!(VAGRANT_COMMA) run `vagrant status NAME`

Получить информацию об отдельно взятой машине Vagrant, напри-
мер vagrant2, можно командой

$ vagrant ssh-config vagrant2

Она выведет следующий результат:

Host vagrant2
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no

106    Глава 4. Реестр: описание серверов

 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Нашему сценарию динамического реестра необходимо вызвать эти ко-
манды, проанализировать результаты и вывести соответствующий текст
в формате JSON. Для анализа результата команды vagrant ssh-config можно
воспользоваться библиотекой Paramiko. Но сначала установите ее коман-
дой pip:

$ pip3 install --user paramiko

Ниже приводится интерактивный сеанс Python, объясняющий, как
использовать Paramiko :

$ python3
>>> import io
>>> import subprocess
>>> import paramiko
>>> cmd = ["vagrant", "ssh-config", "vagrant2"]
>>> ssh_config = subprocess.check_output(cmd).decode("utf-8")
>>> config = paramiko.SSHConfig()
>>> config.parse(io.StringIO(ssh_config))
>>> host_config = config.lookup("vagrant2")
>>> print (host_config)
{'hostname': '127.0.0.1', 'user': 'vagrant', 'port': '2200', 'userknownhostsfile':
'/dev/null', 'stricthostkeychecking': 'no', 'passwordauthentication': 'no',
'identityfile': ['/Users/bas/.vagrant.d/insecure_private_key'], 'identitiesonly':
'yes', 'loglevel': 'FATAL'}

В примере 4.12 приводится полный исходный код сценария vagrant.
py.

Пример 4.12. vagrant.py

#!/usr/bin/env python3
""" Сценарий динамического реестра Vagrant """
Основан на реализации Марка Мандела (Mark Mandel)
https://github.com/markmandel/vagrant_ansible_example

import argparse
import io
import json
import subprocess
import sys

import paramiko

def parse_args():

Деление реестра на несколько файлов    107

 """параметры командной строки"""
 parser = argparse.ArgumentParser(description="Vagrant inventory script")
 group = parser.add_mutually_exclusive_group(required=True)
 group.add_argument('--list', action='store_true')
 group.add_argument('--host')
 return parser.parse_args()

def list_running_hosts():
 """Функция vagrant.py --list"""
 cmd = ["vagrant", "status", "--machine-readable"]
 status = subprocess.check_output(cmd).rstrip().decode("utf-8")
 hosts = []
 for line in status.splitlines():
 (_, host, key, value) = line.split(',')[:4]
 if key == 'state' and value == 'running':
 hosts.append(host)
 return hosts

def get_host_details(host):
 """Функция vagrant.py --host <имя хоста>"""
 cmd = ["vagrant", "ssh-config", host]
 ssh_config = subprocess.check_output(cmd).decode("utf-8")
 config = paramiko.SSHConfig()
 config.parse(io.StringIO(ssh_config))
 host_config = config.lookup(host)
 return {'ansible_host': host_config['hostname'],
 'ansible_port': host_config['port'],
 'ansible_user': host_config['user'],
 'ansible_private_key_file': host_config['identityfile'][0]}

def main():
 """главная функция"""
 args = parse_args()
 if args.list:
 hosts = list_running_hosts()
 json.dump({'vagrant': hosts}, sys.stdout)
 else:
 details = get_host_details(args.host)
 json.dump(details, sys.stdout)

if __name__ == '__main__':
 main()

Деление реестра на несколько файлов
Если вам необходим обычный файл реестра и сценарий динамического
реестра (или их комбинация), то просто поместите их в один каталог и

108    Глава 4. Реестр: описание серверов

настройте систему Ansible так, чтобы она использовала этот каталог как
реестр. Это можно сделать двумя способами – добавив параметр inventory
в ansible.cfg или включив параметр командной строки -i. Ansible обра-
ботает все файлы и объединит результаты в единый реестр.

Это означает, что вы сможете создать единый каталог реестра, обслу-
живаемый системой Ansible, включающий хосты в Vagrant, Amazon EC2,
Google Cloud Platform, Microsoft Azure и вообще где угодно!

Например, вот как могла бы выглядеть структура такого каталога:

	 inventory/aws_ec2.yml
	 inventory/azure_rm.yml
	 inventory/group_vars/vagrant
	 inventory/group_vars/staging
	 inventory/group_vars/production
	 inventory/hosts
	 inventory/vagrant.py

Добавление элементов во время выполнения
с помощью add_host и group_by
Ansible позволяет добавлять хосты и группы в реестр прямо во время
выполнения сценария. Эта возможность может пригодиться тем, кто
управляет динамическими кластерами, такими как Redis Sentinel.

add_host
Модуль add_host добавляет хост в реестр. Этот модуль можно исполь-

зовать, например, для создания и настройки новых экземпляров вирту-
альных машин в облаке IaaS.

Может ли пригодиться модуль add_host
при использовании динамического реестра?

Даже если вы используете сценарии динамического реестра, вам все рав-
но может пригодиться модуль add_host, например чтобы запустить и настро-
ить новый экземпляр виртуальной машины в ходе выполнения сценария
Ansible.
Если новый хост появится во время выполнения сценария Ansible, то сце-
нарий динамического реестра не подхватит его. Это объясняется тем, что
создание динамического реестра производится в начале выполнения сце-
нария, поэтому Ansible не увидит новых хостов, появившихся после.
Мы рассмотрим пример работы использования модуля add_host в главе 14.

Добавление элементов во время выполнения с помощью add_host и group_by    109

Запуск модуля выглядит так:

- name: Add the host
 add_host
 name: hostname
 groups: web,staging
 myvar: myval

Определение списка групп и дополнительных переменных можно
опустить.

Ниже показано практическое применение модуля add_host. Здесь он
добавляет новую машину Vagrant и настраивает ее:

- name: Provision a Vagrant machine
 hosts: localhost
 vars:
 box: centos/stream8

 tasks:
 - name: Create a Vagrantfile
 command: "vagrant init {{ box }}"
 args:
 creates: Vagrantfile

 - name: Bring up the vagrant machine
 command: vagrant up
 args:
 creates: .vagrant/machines/default/virtualbox/box_meta

 - name: Add the vagrant machine to the inventory
 add_host:
 name: default
 ansible_host: 127.0.0.1
 ansible_port: 2222
 ansible_user: vagrant
 ansible_private_key_file: >
 .vagrant/machines/default/virtualbox/private_key

- name: Do something to the vagrant machine
 hosts: default
 tasks:
 # Здесь находится список выполняемых задач
 - name: ping
 ping:
...

110    Глава 4. Реестр: описание серверов

Модуль add_host добавляет хост только на время исполнения
сценария. Он не вносит изменений в файл реестра.

Подготавливая свои сценарии Ansible, мы предпочитаем разбивать
их на две операции. Первая выполняется на локальном хосте и подго-
тавливает хосты, а вторая настраивает их.

Обратите внимание, что для этой задачи задан параметр creates=
Vagrantfile:

- name: Create a Vagrantfile
 command: "vagrant init {{ box }}"
 args:
 creates: Vagrantfile

Он сообщает системе Ansible, что если файл Vagrantfile имеется, то
хост уже находится в правильном состоянии и нет необходимости вы-
полнять команду снова. Это один из способов достижения идемпотент-
ности в сценариях Ansible, запускающих модуль command, благодаря ко-
торому команда (потенциально неидемпотентная) выполняется только
один раз.

group_by
Посредством модуля group_by Ansible позволяет создавать новые груп-

пы во время выполнения сценария, основываясь на значении перемен-
ной, которая была установлена для каждого хоста и в терминологии
Ansible называет фактом (подробнее о фактах рассказывается в главе 5).

Если сбор фактов включен, то Ansible определит для каждого хоста
набор дополнительных переменных. Например, для 32-разрядных x86
машин будет определена переменная ansible_machine со значением i386,
а для 64-разрядных x86 машин – со значением x86_64. Если Ansible ис-
пользуется для управления хостами с разной аппаратной архитектурой,
то можно создать группы i386 и x86_64 с отдельными задачами.

Также можно воспользоваться фактом ansible_distribution для группи-
ровки хостов по названию дистрибутива Linux (например, Ubuntu или
CentOS).

- name: Create groups based on Linux distribution
 group_by:
 key: "{{ ansible_facts.distribution }}"

Сценарий в примере 4.13 определяет отдельные группы для хостов с
Ubuntu и CentOS, используя модуль group_by, а затем устанавливает паке-
ты – в Ubuntu с помощью модуля apt и в CentOS с помощью модуля yum.

Заключение    111

Пример 4.13. Создание отдельных групп для разных дистрибутивов Linux

- name: Group hosts by distribution
 hosts: all
 gather_facts: true
 tasks:
 - name: Create groups based on distro
 group_by:
 key: "{{ ansible_facts.distribution }}"

- name: Do something to Ubuntu hosts
 hosts: Ubuntu
 become: true
 tasks:
 - name: Install jdk and jre
 apt:
 update_cache: true
 name:
 - openjdk-11-jdk-headless
 - openjdk-11-jre-headless
- name: Do something else to CentOS hosts
 hosts: CentOS
 become: true
 tasks:
 - name: Install jdk
 yum:
 name:
 - java-11-openjdk-headless
 - java-11-openjdk-devel

Заключение
На этом мы заканчиваем обсуждение реестра Ansible. Реестр – очень
гибкий объект, помогающий описать имеющуюся инфраструктуру и
порядок ее использования. Реестр может быть простым текстовым фай-
лом и сложным сценарием, какой только вам удастся написать.

В следующей главе мы поближе познакомимся с переменными.

Глава 5
Переменные и факты

Ansible не является полноценным языком программирования, но в ней
присутствуют некоторые черты, присущие языкам программирования.
Одна из таких черт – подстановка переменных. В этой главе мы подроб-
нее рассмотрим поддержку переменных в Ansible, включая специаль-
ный тип переменных, который в терминах Ansible называется фактом.

Определение переменных в сценариях
Самый простой способ определить переменную – поместить в сцена-
рий секцию vars с именами и значениями переменных. Мы уже исполь-
зовали этот прием в примере 3.9, где определили несколько перемен-
ных конфигурации:

vars:
 tls_dir: /etc/nginx/ssl/
 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

Определение переменных в отдельных файлах
Ansible позволяет также распределить объявления переменных по

нескольким файлам, использовав секцию vars_files . Допустим, что в пре-
дыдущем примере нам понадобилось поместить переменные в файл
nginx.yml, убрав их из сценария. Для этого достаточно заменить секцию
vars секцией vars_files, как показано ниже:

vars_files:
 - nginx.yml

Файл nginx.yml будет выглядеть, как показано в примере 5.1.

Пример 5.1. nginx.yml

key_file: nginx.key
cert_file: nginx.crt

Вывод значений переменных    113

conf_file: /etc/nginx/sites-available/default
server_name: localhost

В главе 6 мы увидим пример использования секции vars_files для пере-
мещения переменных с конфиденциальной информацией в отдельный
файл.

Структура каталогов
Как уже обсуждалось в главе 4, Ansible позволяет определить пере-

менные, связанные с хостами или группами, в файле реестра или в от-
дельных файлах, находящихся рядом с файлом реестра или сценарием.
Для этого нужно создать каталоги рядом с файлом реестра или сценари-
ями. Файлы и каталоги в подкаталоге group_vars должны иметь имена,
совпадающие с именами соответствующих им групп в файле реестра,
а файлы в каталоге host_vars – с именами соответствующих им хостов:

inventory/
 production/
 hosts
 group_vars/
 webservers.yml
 all.yml
 host_vars/
 hostname.yml

Вывод значений переменных
Для отладки часто удобно иметь возможность вывести значения пере-
менных. В главе 3 мы видели, как использовать модуль debug для вывода
произвольного сообщения. Его также можно использовать для вывода
значений переменных:

- debug: var=myvarname

Эту сокращенную форму записи без атрибута name удобно использо-
вать во время разработки, и мы еще не раз применим ее в этой главе.

Интерполяция переменных
Чтобы вывести отладочное сообщение с переменной, нужно заклю-

чить имя переменной в двойные кавычки и окружить двойными фи-
гурными скобками:

- name: Display the variable
 debug:
 msg: "The file used was {{ conf_file }}"

Значения переменных можно объединять в двойных фигурных скоб-
ках с помощью оператора тильды ~:

114    Глава 5. Переменные и факты

- name: Concatenate variables
 debug:
 msg: "The URL is https://{{ server_name ~'.'~ domain_name }}/"

Регистрация переменных
Часто требуется установить значение переменной в зависимости от
результата задачи. Напомним, что все модули в Ansible возвращают
результат в формате JSON. Чтобы сохранить этот результат, нужно со-
здать зарегистрированную переменную при вызове модуля с помощью
ключевого слова register. Пример 5.2 демонстрирует, как сохранить ввод
команды whoami в переменной login.

Пример 5.2. Сохранение вывода команды в переменной

- name: Capture output of whoami command
 command: whoami
 register: login

Чтобы использовать переменную login позднее, мы должны знать тип
ее значения. Значением переменных, объявленных с помощью ключе-
вого слова register, всегда является словарь, однако ключи в словаре мо-
гут отличаться в зависимости от вызываемого модуля.

К сожалению, в официальной документации по модулям Ansible не
указывается, как выглядят значения, возвращаемые каждым модулем.
Но в документации к модулям часто приводятся примеры с ключевым
словом register, что может оказаться полезным. Простейший способ уз-
нать, какие значения возвращает модуль, – зарегистрировать перемен-
ную и вывести ее содержимое с помощью модуля debug.

Допустим, у нас есть сценарий, представленный в примере 5.3.

Пример 5.3. whoami.yml

- name: Show return value of command module
 hosts: fedora
 gather_facts: false
 tasks:
 - name: Capture output of id command
 command: id -un
 register: login

 - debug: var=login
 - debug: msg="Logged in as user {{ login.stdout }}"
...

Вот что выведет модуль debug:

Регистрация переменных    115

TASK [debug] ***
ok: [fedora] ==> {
 "login": {
 "changed": true, 
 "cmd": [
 "id",
 "-un"
],
 "delta": "0:00:00.002262",
 "end": "2021-05-30 09:25:41.696308",
 "failed": false,
 "rc": 0, 
 "start": "2021-05-30 09:25:41.694046",
 "stderr": "", 
 "stderr_lines": [],
 "stdout": "vagrant", 
 "stdout_lines": [
 "vagrant"
]
 }
}

	 Ключ changed присутствует в возвращаемых значениях всех моду-
лей, с его помощью Ansible сообщает, произошли ли изменения в
состоянии. Модули command и shell всегда возвращают значение true,
если оно не было изменено ключевым словом changed_when, которое
будет рассматриваться в главе 8.

	 Ключ cmd содержит выполненную команду в виде списка строк.
	 Ключ rc содержит код возврата. Если он не равен нулю, то Ansible

считает, что задача выполнилась с ошибкой.
	 Ключ stderr содержит текст, записанный в стандартный вывод

ошибок, в виде одной строки.
	 Ключ stdout содержит текст, записанный в стандартный вывод, в

виде одной строки.
	 Ключ stdout_lines содержит текст, записанный в стандартный вы-

вод, с разбивкой на строки по символу перевода строки. Это спи-
сок, каждый элемент которого является одной строкой из стан-
дартного вывода.

При использовании ключевого слова register с модулем command обычно
требуется доступ к ключу stdout, как показано в примере 5.4.

Пример 5.4. Использование результата вывода команды в задаче

- name: Capture output of id command
 command: id -un

116    Глава 5. Переменные и факты

 register: login

- debug: msg="Logged in as user {{ login.stdout }}"

Иногда бывает желательно как-то обработать вывод задачи, по-
терпевшей ошибку. Однако если задача потерпела ошибку, то Ansible
остановит ее выполнение, не дав возможности получить эту ошиб-
ку. Чтобы Ansible не останавливала работу после появления ошиб-
ки, можно использовать ключевое слово ignore_errors, как показано в
примере 5.5.

Пример 5.5. Игнорирование ошибки при выполнении модуля

- name: Run myprog
 command: /opt/myprog
 register: result
 ignore_errors: true

- debug: var=result

Возвращаемое значение модуля shell имеет такую же структуру, что
и возвращаемое значение модуля command, но другие модули возвращают
отличающиеся ключи.

В примере 5.6 показано, что возвращается модуль stat, получающий
атрибуты файла.

Пример 5.6. Фрагмент вывода модуля stat

TASK [Display result.stat] ***
ok: [ubuntu] ==> {
 "result.stat": {
 "atime": 1622724660.888851,
 "attr_flags": "e",
 "attributes": [
 "extents"
],
 "block_size": 4096,
 "blocks": 8,
 "charset": "us-ascii",
 "checksum": "7df51a4a26c00e5b204e547da4647b36d44dbdbf",
 "ctime": 1621374401.1193385,
 "dev": 2049,
 "device_type": 0,
 "executable": false,
 "exists": true,
 "gid": 0,

Регистрация переменных    117

 "gr_name": "root",
 "inode": 784,
 "isblk": false,
 "ischr": false,
 "isdir": false,
 "isfifo": false,
 "isgid": false,
 "islnk": false,
 "isreg": true,
 "issock": false,
 "isuid": false,
 "mimetype": "text/plain",
 "mode": "0644",
 "mtime": 1621374219.5709288,
 "nlink": 1,
 "path": "/etc/ssh/sshd_config",
 "pw_name": "root",
 "readable": true,
 "rgrp": true,
 "roth": true,
 "rusr": true,
 "size": 3287,
 "uid": 0,
 "version": "1324051592",
 "wgrp": false,
 "woth": false,
 "writeable": true,
 "wusr": true,
 "xgrp": false,
 "xoth": false,
 "xusr": false
 }
}

Модуль stat сообщает всю информацию о файле, какую только можно
получить.

Если вы собираетесь использовать зарегистрированные пе-
ременные в своих сценариях, то обязательно узнайте, что
возвращается в них в обоих случаях – когда состояние хоста
изменяется и когда оно не изменяется. В противном случае
ваш сценарий может потерпеть неудачу, попытавшись обра-
титься к отсутствующему ключу зарегистрированной пере-
менной.

118    Глава 5. Переменные и факты

Доступ к ключам словаря в переменной
Если переменная содержит словарь, то получить доступ к его ключам мож-
но при помощи точки (.) или индекса ([]). В примере 5.6 был представлен
способ ссылки на переменную с использованием точки:
 {{ result.stat }}

Однако точно так же можно было бы использовать индекс:
 {{ result['stat'] }}

Это правило применимо к любому уровню вложенности, т. е. все следующие
выражения эквивалентны:
 result['stat']['mode']
 result['stat'].mode
 result.stat['mode']
 result.stat.mode

Бас предпочитает пользоваться точкой (точечной нотацией), кроме случа-
ев, когда ключ содержит символы, которые нельзя использовать в качестве
имени переменной, такие как точка, пробел или дефис.
Главное преимущество формы доступа с индексом – возможность исполь-
зовать переменные в квадратных скобках (не заключая их в кавычки):
 - name: Display result.stat detail
 debug: var=result['stat'][stat_key]

Для разыменования переменных Ansible использует Jinja2. За дополнитель-
ной информацией обращайтесь к документации Jinja2 (https://oreil.ly/8hKiE).

Факты
Как было показано выше, когда Ansible выполняет сценарий, до запуска
первой задачи происходит следующее:

TASK [Gathering Facts] ***
ok: [debian]
ok: [fedora]
ok: [ubuntu]

На этапе сбора фактов (GATHERING FACTS) Ansible подключается к хос
ту и запрашивает у него всю информацию: аппаратную архитектуру,
название операционной системы, IP-адреса, объем памяти и диска
и др. Получить доступ ко всем этим данным можно через переменную
ansible_facts. По умолчанию к некоторым фактам Ansible можно так-
же обращаться как к переменным верхнего уровня, добавляя префикс
ansible_. Эти переменные ведут себя точно так же, как любые другие
переменные. Это поведение можно отключить с помощью параметра
INJECT_FACTS_AS_VARS.

https://oreil.ly/8hKiE

Факты    119

В примере 5.7 показан сценарий, который выводит сведения об опе-
рационной системе каждого сервера.

Пример 5.7. Сценарий, сообщающий сведения об операционной системе

- name: 'Ansible facts.'
 hosts: all
 gather_facts: true
 tasks:
 - name: Print out operating system details
 debug:
 msg: >-
 os_family:
 {{ ansible_facts.os_family }},
 distro:
 {{ ansible_facts.distribution }}
 {{ ansible_facts.distribution_version }},
 kernel:
 {{ ansible_facts.kernel }}
...

Так выглядит вывод для серверов с Debian, Fedora и Ubuntu:

PLAY [Ansible facts.] **
TASK [Gathering Facts] ***
ok: [debian]
ok: [fedora]
ok: [ubuntu]
TASK [Print out operating system details] **************************************
ok: [ubuntu] ==> {
 "msg": "os_family: Debian, distro: Ubuntu 20.04, kernel: 5.4.0-73-generic"
}
ok: [fedora] ==> {
 "msg": "os_family: RedHat, distro: Fedora 34, kernel: 5.11.12-300.fc34.x86_64"
}
ok: [debian] ==> {
 "msg": "os_family: Debian, distro: Debian 10, kernel: 4.19.0-16-amd64"
}
PLAY RECAP ***
debian : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
fedora : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
ubuntu : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Просмотр всех фактов, доступных для сервера
Ansible осуществляет сбор фактов с помощью специального моду-

ля setup. Вам не нужно запускать этот модуль в сценариях, потому что

120    Глава 5. Переменные и факты

Ansible делает это автоматически на этапе сбора фактов. Однако если
вручную запустить его с помощью утилиты ansible, например:

$ ansible ubuntu -m setup

то Ansible выведет все факты, как показано в примере 5.8.

Пример 5.8. Результат запуска модуля setup

ubuntu | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "192.168.4.10",
 "10.0.2.15"
],
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fef1:d47",
 "fe80::a6:4dff:fe77:e100"
],
(множество других фактов)

Обратите внимание, что модуль возвращает словарь с ключом ansible_
facts, значением которого является словарь с именами и значения ак-
туальных фактов.

Вывод подмножества фактов
Поскольку Ansible собирает большое количество фактов, модуль

setup поддерживает параметр filter для фильтрации фактов по именам
с поддержкой шаблонных символов (шаблонные символы используются
командными оболочками для выбора файлов по шаблону, такому как
*.txt.) Параметр filter фильтрует только по ключам верхнего уровня в
словаре ansible_facts. Например, команда

$ ansible all -m setup -a 'filter=ansible_all_ipv6_addresses'
выведет:
debian | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fe8d:c04d",
 "fe80::a00:27ff:fe55:2351"
]
 },
 "changed": false
}
fedora | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv6_addresses": [
 "fe80::505d:173f:a6fc:3f91",

Факты    121

 "fe80::a00:27ff:fe48:995"
]
 },
 "changed": false
}
ubuntu | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fef1:d47",
 "fe80::a6:4dff:fe77:e100"
]
 },
 "changed": false
}

Использование параметра filter помогает найти интересующие дета-
ли настройки сервера. Фильтр filter=ansible_env выведет значения пере-
менных окружения на целевых хостах.

Любой модуль может возвращать факты
Если внимательно рассмотреть пример 5.8, то можно заметить, что

результатом является словарь с ключом ansible_facts. Ключ ansible_facts
в возвращаемом значении – это идиома Ansible. Если модуль вернет
словарь, содержащий ключ ansible_facts, то Ansible создаст переменные
с этими именами и значениями и ассоциирует их с активным хостом.
Модули, возвращающие информацию об объектах, не являющихся уни-
кальными для хоста, получают имена, оканчивающееся на _info.

Для модулей, возвращающих факты, нет необходимости регистри-
ровать переменные, поскольку Ansible создает их автоматически. На-
пример, задача в примере 5.9 использует модуль service_facts для извле-
чения фактов о службах, а затем выводит информацию, касающуюся
демона SSH. (Обратите внимание, что здесь для обращения к ключу
словаря используется индексная нотация. Это связано с наличием точ-
ки в имени ключа.)

Пример 5.9. Использование модуля service_facts для извлечения фактов

- name: Show a fact returned by a module
 hosts: debian
 gather_facts: false
 tasks:
 - name: Get services facts
 service_facts:

 - debug: var=ansible_facts['services']['sshd.service']

122    Глава 5. Переменные и факты

Эта задача выведет:

TASK [debug] ***
ok: [debian] ==> {
 "ansible_facts['services']['sshd.service']": {
 "name": "sshd.service",
 "source": "systemd",
 "state": "active",
 "status": "enabled"
 }
}

Обратите внимание, что нет необходимости использовать ключевое
слово register при вызове модуля service_facts, потому что он возвращает
факты. В Ansible имеется несколько модулей, возвращающих факты.

Локальные факты
Ansible поддерживает также дополнительный механизм, позволя-

ющий ассоциировать факты с хостом. Разместите один или несколько
файлов на хосте в каталоге /etc/ansible/facts.d, и Ansible обнаружит их,
если они отвечают любому из следующих требований:

•	 имеют формат .ini;
•	 имеют формат JSON;
•	 являются выполняемыми файлами, не принимающими аргумен-

тов, и выводят результат в формате JSON в стандартный вывод.

Эти факты доступны в виде ключей особой переменной ansible_local.
В примере 5.10 представлен файл факта в формате .ini.

Пример 5.10. /etc/ansible/facts.d/example.fact

[book]
title=Ansible: Up and Running
authors=Meijer, Hochstein, Moser
publisher=O'Reilly

Если скопировать этот файл в /etc/ansible/facts.d/example.fact на уда-
ленном хосте, мы сможем обратиться к содержимому переменной ansi-
ble_local в сценарии:

- name: Print ansible_local
 debug: var=ansible_local

- name: Print book title
 debug: msg="The title of the book is {{ ansible_local.example.book.title }}"

Вот что получится в результате выполнения этих задач:

Встроенные переменные    123

TASK [Print ansible_local] ***
ok: [fedora] ==> {
 "ansible_local": {
 "example": {
 "book": {
 "authors": "Meijer, Hochstein, Moser",
 "publisher": "O'Reilly",
 "title": "Ansible: Up and Running"
 }
 }
 }
}
TASK [Print book title] **
ok: [fedora] ==> {
 "msg": "The title of the book is Ansible: Up and Running"
}

Обратите внимание на структуру значения переменной ansible_local.
Поскольку файл факта называется example.fact, переменная ansible_local
получит значение-словарь с ключом example.

Использование модуля set_fact для задания
новой переменной
Ansible позволяет устанавливать факты (по сути, создавать новые пе-

ременные) в задачах с помощью модуля set_fact. Лорин часто исполь-
зует set_fact непосредственно после вызова service_facts, чтобы упростить
ссылки на переменные. Пример 5.11 демонстрирует, как использовать
set_fact, чтобы к переменной можно было обращаться по имени nginx_
state вместо ansible_facts.services.nginx.state.

Пример 5.11. Использование set_fact для упрощения ссылок на переменные

- name: Set nginx_state
 when: ansible_facts.services.nginx.state is defined
 set_fact:
 nginx_state: "{{ ansible_facts.services.nginx.state }}"

Встроенные переменные
Ansible определяет несколько переменных, всегда доступных в сцена-
риях. Они перечислены в табл. 5.1.

Переменная Описание

hostvars Словарь, ключами которого являются имена хостов Ansible,
а значениями – словари, отображающие имена переменных
в их значения

124    Глава 5. Переменные и факты

Переменная Описание

inventory_hostname Имя текущего хоста, как оно задано в Ansible. Может быть
полным доменным именем (например, myhost.example.com)

inventory_hostname_short Имя текущего хоста, как оно задано в Ansible, без имени
домена (например, myhost)

group_names Список всех групп, в которые входит текущий хост

groups Словарь, ключи которого – имена групп в Ansible, а значения
– списки имен хостов, входящих в группы. Включает группы
all и ungrouped: {"all": [...], "web": [...], "ungrouped":
[...]}

ansible_check_mode Логическая переменная, принимающая истинное значение,
когда сценарий выполняется в режиме проверки (см. раздел
«Режим проверки» в главе 8)

ansible_play_batch Логическая переменная, принимающая истинное значение,
когда сценарий выполняется в тестовом режиме (см. раздел
«Пакетная обработка хостов» в главе 11)

ansible_play_hosts Список имен хостов из реестра, участвующих в текущей
операции

ansible_version Словарь с информацией о версии Ansible: {"full": "2.3.1.0",
"major": 2, "minor": 3, "revision": 1, "string": "2.3.1.0"}

Переменные hostvars, inventory_hostname и groups заслуживают отдельного
обсуждения.

hostvars
В Ansible область видимости переменных ограничивается хостами.

Рассуждать о значении переменной имеет смысл только в контексте за-
данного хоста.

Идея соответствия переменных заданному хосту может показаться
странной, поскольку Ansible позволяет определять переменные для
групп хостов. Например, если объявить переменную в секции vars опе-
рации, она будет определена для набора хостов в этой операции. Но на
самом деле Ansible создаст копию этой переменной для каждого хоста
в группе.

Иногда задача, запущенная на одном хосте, требует значения пере-
менной, определяемого на другом хосте. Например, вам может понадо-
биться создать на веб-сервере конфигурационный файл, содержащий
IP-адрес интерфейса eth1 сервера базы данных, который заранее неиз-
вестен. IP-адрес доступен как факт ansible_eth1.ipv4.address сервера базы
данных.

Встроенные переменные    125

Решить проблему можно с помощью переменной hostvars. Это сло-
варь, содержащий все переменные, объявленные на всех хостах, ключа-
ми которого являются имена хостов, как они заданы в реестре Ansible.
Если Ansible еще не собрала фактов о хосте, тогда вы не сможете полу-
чить доступа к его фактам с использованием переменной hostvars, кроме
случая, когда включено кеширование фактов1.

Продолжим наш пример. Если сервер базы данных имеет имя
db.example.com, тогда мы можем добавить в шаблон конфигурации сле-
дующую ссылку:

{{ hostvars['db.example.com'].ansible_eth1.ipv4.address }}

На ее место будет подставлено значение факта ansible_eth1.ipv4.address,
связанного с хостом db.example.com.

Имейте в виду, что значение hostvars вычисляется при запуске
Ansible, а host_vars – это каталог, в котором можно определить
переменные для конкретной системы.

inventory_hostname
inventory_hostname – это имя текущего хоста, как оно задано в реестре

Ansible. Если вы определили псевдоним для хоста, тогда это – псевдо-
ним. Например, если реестр содержит строку

ubuntu ansible_host=192.168.4.10

тогда переменная inventory_hostname получит значение ubuntu.
Вот как с помощью hostvars и inventory_hostname можно вывести все пе-

ременные, связанные с текущим хостом:

- debug: var=hostvars[inventory_hostname]

groups
Переменная groups может пригодиться для доступа к переменным,

определенным для группы хостов. Допустим, мы настраиваем хост ба-
лансировщика нагрузки, и требуется добавить в конфигурационный
файл IP-адреса всех серверов в группе web. Тогда мы можем добавить в
шаблон конфигурации следующий фрагмент:

backend web-backend
{% for host in groups.web %}

1	 Информация о кешировании данных приводится в главе 11.

126    Глава 5. Переменные и факты

 server {{ hostvars[host].inventory_hostname }} \
 {{ hostvars[host].ansible_default_ipv4.address }}:80
{% endfor %}

и получить такой результат:

backend web-backend
 server georgia.example.com 203.0.113.15:80
 server newhampshire.example.com 203.0.113.25:80
 server newjersey.example.com 203.0.113.38:80

С помощью переменной groups в шаблоне файла конфигурации можно
перебирать хосты в группе, используя только имя группы, или изменять
хосты в группе, не изменяя шаблон файла конфигурации.

Установка переменных из командной строки
Переменные, установленные передачей параметра -e var=value команде
ansible-playbook, имеют наивысший приоритет и могут заменять ранее
определенные переменные. В примере 5.12 показано, как установить
переменную greeting со значением hiya.

Пример 5.12. Установка переменной в командной строке

$ ansible-playbook 4-12-greet.yml -e greeting=hiya

Метод ansible-playbook -e var=value лучше всего использовать, когда сце-
нарий Ansible предполагается применять подобно сценарию команд
ной оболочки, принимающему аргумент командной строки. Пара-
метр -e позволяет передавать переменные как аргументы.

В примере 5.13 демонстрируется очень простой сценарий, который
выводит сообщение, определяемое переменной.

Пример 5.13. Вывод сообщения, определяемого переменной

- name: Pass a message on the command line
 hosts: localhost
 gather_facts: false

 vars:
 greeting: "you didn't specify a message"

 tasks:
 - name: Output a message
 debug:
 msg: "{{ greeting }}"
...

Установка переменных из командной строки    127

Если запустить его, как показано ниже:

$ ansible-playbook greet.yml -e greeting=hiya

то он выведет:

PLAY [Pass a message on the command line] **************************************
TASK [Gathering Facts] ***
ok: [localhost]
TASK [Output a message] **
ok: [localhost] ==> {
 "msg": "hiya"
}
PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Чтобы включить пробел в значение переменной, используйте кавыч-
ки:

$ ansible-playbook greet.yml -e 'greeting="hi there"'

Данное значение необходимо целиком заключить в одинарные ка-
вычки 'greeting="hi there"', чтобы командная оболочка интерпретирова-
ла его как один аргумент. Кроме того, строку "hi there" нужно заключить
в двойные кавычки, чтобы Ansible интерпретировала сообщение как
единую строку.

Вместо отдельных переменных Ansible позволяет передать ей файл с
определениями переменных, для чего в параметре -e следует передать
имя файла в виде @filename.yml. Например, допустим, что у нас имеется
файл, как показано в примере 5.14.

Пример 5.14. greetvars.yml

greeting: hiya

Этот файл можно передать сценарию, как показано ниже:

$ ansible-playbook 5-12-greet.yml -e @5-14-greetvars.yml

В примере 5.15 показан простой способ вывода любой переменной,
заданной флагом -e в командной строке.

Пример 5.15. Вывод переменной, заданной флагом -e

- name: Show any variable during debugging.
 hosts: all
 gather_facts: true
 tasks:
 - debug: var="{{ variable }}"
...

128    Глава 5. Переменные и факты

Этот прием фактически позволяет получить «изменчивую перемен-
ную», которую можно использовать для отладки:

$ ansible-playbook 5-15-variable-variable.yml -e variable=ansible_python

Приоритет
Мы рассмотрели несколько способов определения переменных, и мо-

жет случиться так, что вам потребуется задавать одну и ту же перемен-
ную для хоста множество раз, используя разные значения. По возмож-
ности избегайте этого. Но если сделать это не получается, то вспомните
правила определения приоритета в Ansible. Когда одна и та же пере-
менная определяется в нескольких местах, правила приоритета опре-
деляют, какое из значений она получит в конце концов.

Знание правил приоритета, которые применяет Ansible, может вам
очень пригодиться1. Вот простое эмпирическое правило: чем ближе к
хосту, тем выше приоритет. Соответственно, group_vars имеет приори-
тет над значениями по умолчанию, определяемыми ролями, а host_vars
имеет приоритет перед group_vars. Ниже перечислены способы опреде-
ления переменных в порядке возрастания приоритетов.

1.	 Значения командной строки (например, -u my_user; это не пере-
менные).

2.	 Значения по умолчанию в ролях (определяются в role/defaults/
main.yml).

3.	 Переменные, определяемые в реестре или в сценарии для групп
хостов.

4.	 Секция group_vars/all в реестре.
5.	 Секция group_vars/all в сценарии.
6.	 Секция group_vars/* в реестре.
7.	 Секция group_vars/* в сценарии.
8.	 Переменные, определяемые в реестре или в сценарии для хостов.
9.	 Секция host_vars/* в реестре.

10.	 Секция host_vars/* в сценарии.
11.	 Факты хостов / кешированные факты из set_facts.
12.	 Переменные операций.
13.	 Секция vars_prompt в операции.
14.	 Секция vars_files в операции.
15.	 Переменные ролей (определяемые в файле role/vars/main.yml).
16.	 Блочные переменные (только для задач в блоке).

1	 Подробности ищите в официальной документации (https://oreil.ly/gqsfK).

https://oreil.ly/gqsfK

Заключение    129

17.	 Переменные задач (только для задач).
18.	 Секция include_vars.
19.	 Факты, возвращаемые модулем set_facts / зарегистрированные

переменные.
20.	 Параметры ролей (и include_role).
21.	 Подключаемые параметры.
22.	 Дополнительные переменные (например, -e "user=my_user").

Заключение
В этой главе мы рассмотрели разные способы определения и доступа
к фактам и переменным. Отделение переменных от задач и создание
реестров с правильными значениями переменных позволяет создавать
окружения для тестирования и обкатки программного обеспечения.
Ansible – очень гибкая система в том, что касается определения данных
на том или ином уровне. В следующей главе мы сконцентрируемся на
практических примерах развертывания приложений.

Глава 6
Введение в Mezzanine:

тестовое приложение

В главе 3 мы рассмотрели основные правила написания сценариев. Но
в реальной жизни все более запутано, чем во вводных главах книг по
программированию. Поэтому в этой главе мы рассмотрим закончен-
ный пример развертывания нетривиального приложения, а в следую-
щей исследуем реализацию развертывания с помощью Ansible.

В качестве примера приложения используем систему управления кон-
тентом (Content Management System, CMS) Mezzanine (https://oreil.ly/xqgMN),
сходную по духу с WordPress. Mezzanine устанавливается поверх Django,
свободно распространяемого фреймворка веб-приложений на Python.

Почему сложно развертывать приложения
в промышленном окружении
Давайте немного отклонимся от темы и поговорим о различиях между
запуском программного обеспечения в окружении разработки на ва-
шем ноутбуке и в промышленном окружении. Mezzanine – отличный
пример приложения, которое гораздо легче запустить в окружении раз-
работки, чем развернуть в промышленном окружении. В примере 6.1
показано, что необходимо для запуска приложения в Ubuntu Focal/641.

Пример 6.1. Запуск Mezzanine в окружении разработки

$ sudo apt-get install -y python3-venv
$ python3 -m venv venv
$ source venv/bin/activate
$ pip3 install wheel
$ pip3 install mezzanine
$ mezzanine-project myproject
$ cd myproject
$ sed -i 's/ALLOWED_HOSTS = \[\]/ALLOWED_HOSTS = ["*"]/' myproject/settings.py

1	 В этой главе мы установим пакеты Python в виртуальное окружение. Но в репозитории вы так-
же найдете пример развертывания на виртуальной машине Vagrant.

https://oreil.ly/xqgMN

Почему сложно развертывать приложения в промышленном окружении    131

$ python manage.py migrate
$ python manage.py runserver 0.0.0.0:8000

В конечном итоге вы должны увидеть следующий результат на тер-
минале:

 d^^^^^^^^^b
 .d'' ``b.
 .p' `q.
 .d' `b.
 .d' `b. * Mezzanine 4.3.1
 :: :: * Django 1.11.29
 :: M E Z Z A N I N E :: * Python 3.8.5
 :: :: * SQLite 3.31.1
 `p. .q' * Linux 5.4.0-74-generic
 `p. .q'
 `b. .d'
 `q.. ..p'
 ^q........p^
 ''''
Performing system checks...
System check identified no issues (0 silenced).
June 15, 2021 - 19:24:35
Django version 1.11.29, using settings 'myproject.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.

Введя в браузере адрес http://127.0.0.1:8000/, вы должны увидеть
веб-страницу, как показано на рис. 6.1. (Этот сервер принимает запросы
с любого IP-адреса, согласно указанному в сообщении адресу 0.0.0.0.)

Рис. 6.1. Главная страница Mezzanine сразу после установки

132    Глава 6. Введение в Mezzanine: тестовое приложение

Совсем другое дело – развертывание приложения в промышленном
окружении. Когда вы запустите команду mezzanine-project, Mezzanine сге-
нерирует сценарий развертывания Fabric (http://www.fabfile.org/) в файле
myproject/fabfile.py, который можно использовать для развертывания
проекта на промышленном сервере. (Fabric – это инструмент, написан-
ный на Python, позволяющий автоматизировать выполнение задач че-
рез SSH.) Сценарий содержит почти 700 строк кода без учета подключа-
емых им файлов конфигурации, также участвующих в развертывании.

Почему развертывание в промышленном окружении настолько слож-
нее? Я рад, что вы спросили. В окружении разработки Mezzanine допус
кает следующие упрощения (см. рис. 6.2):

•	 в качестве базы данных система использует SQLite и создает файл
базы данных, если он отсутствует;

•	 HTTP-сервер разработки обслуживает и статический контент
(изображения, файлы .css, JavaScript), и динамически сгенериро-
ванную разметку HTML;

•	 HTTP-сервер разработки использует незащищенный протокол
HTTP, а не HTTPS (защищенный);

•	 процесс HTTP-сервера разработки запускается на переднем пла-
не, занимая окно терминала;

•	 имя хоста HTTP-сервера всегда 127.0.0.1 (localhost).

Теперь посмотрим, что происходит при развертывании в промыш-
ленном окружении.

Рис. 6.2. Приложение Django в режиме разработки

База данных PostgreSQL
SQLite – встраиваемая база данных. В промышленном окружении луч-
ше использовать базу данных промышленного уровня, обеспечиваю-
щую лучшую поддержку многочисленных одновременных запросов и
позволяющую запускать несколько HTTP-серверов для балансировки

Браузер

Машина Vagrant
Управляющая машина

База данных
SQLite

Локальный
диск

http://www.fabfile.org/

Веб-сервер NGINX    133

нагрузки. А это значит, что необходимо развернуть систему управления
базами данных, такую как MySQL или PostgreSQL (или просто Postgres).
Установка одного из упомянутых серверов баз данных создает допол-
нительные трудности. Мы должны:

1)	 установить сервер базы данных;
2)	 убедиться в его работоспособности;
3)	 создать базу данных;
4)	 создать пользователя базы данных с соответствующими правами

доступа к ней;
5)	 настроить приложение Mezzanine на использование учетных

данных пользователя базы данных и информации о соединении.

Сервер приложений Gunicorn
Поскольку Mezzanine является Django-приложением, его можно запу-
скать под управлением HTTP-сервера Django, называемого в докумен-
тации Django сервером разработки. Вот что сказано о сервере разработ-
ки (https://oreil.ly/vBIFd) в документации к Django 1.11:

«Не используйте этот сервер в промышленном окружении. Он
предназначен только для разработки. (Мы делаем веб-фреймвор-
ки, а не веб-серверы.)»

Django реализует стандарт Web Server Gateway Interface (WSGI)1. То
есть для запуска Django-приложений, таких как Mezzanine, подойдет
любой HTTP-сервер. Мы будем использовать Gunicorn – один из по-
пулярных HTTP-серверов с поддержкой WSGI, который использует
сценарий развертывания Mezzanine. Также обратите внимание, что
Mezzanine использует незащищенную версию Django, которая больше
не поддерживается.

Веб-сервер NGINX
Gunicorn выполняет Django-приложение в точности как север разработ-
ки. Однако Gunicorn не обслуживает статических ресурсов приложения,
таких как файлы изображений, .css и JavaScript. Их называют статичес
кими, потому что они никогда не изменяются, в отличие от динами
чески генерируемых веб-страниц, которые обслуживает Gunicorn.

Несмотря на то что Gunicorn прекрасно справляется с шифрованием
TLS, для работы с шифрованием обычно настраивают NGINX2.

1	 Описание протокола WSGI можно найти в Python Enhancement Proposal (PEP) 3333 (https://oreil.
ly/yyMcf).

2	 Поддержка шифрования TLS была добавлена в Gunicorn 0.17. До этого для поддержки шифрова-
ния приходилось использовать отдельное приложение, такое как NGINX.

https://oreil.ly/vBIFd
https://oreil.ly/yyMcf
https://oreil.ly/yyMcf

134    Глава 6. Введение в Mezzanine: тестовое приложение

Для обработки статических объектов и поддержки шифрования TLS
мы будем использовать NGINX, как показано на рис. 6.3.

Рис. 6.3. NGINX как реверсивный прокси

Мы должны настроить NGINX как реверсивный прокси для Gunicorn.
Если поступит запрос на получение статического объекта, например
файл .css, то NGINX вернет его клиенту, взяв непосредственно из ло-
кальной файловой системы. Иначе NGINX передаст запрос Gunicorn,
отправив HTTP-запрос службе Gunicorn, действующей на этой же ма-
шине. Какое из этих действий выполнить, NGINX определяет по URL.

Обратите внимание, что запросы извне поступают в NGINX по про-
токолу HTTPS (т. е. зашифрованы), а все запросы из NGINX в Gunicorn
передаются в открытом, нешифрованном виде (по протоколу HTTP).

Диспетчер процессов Supervisor
В окружении разработки мы запускаем сервер приложений в термина-
ле как приложение переднего плана. Закрытие терминала в этом слу-
чае приводит к автоматическому завершению программы. В промыш-
ленном окружении сервер приложений должен запускаться в фоновом
режиме, чтобы он не завершался по окончании сеанса в терминале, в
котором запущен процесс.

В просторечии такие процессы называют демонами (daemon), или
службами (service). Мы должны запустить Gunicorn как демон, и еще
нам нужна возможность останавливать и перезапускать его. Существует
много диспетчеров задач, способных выполнить эту работу. Мы будем
использовать Supervisor, потому что именно его используют сценарии
развертывания Mezzanine.

Заключение
Теперь вы должны понимать, что требуется для развертывания веб-при-
ложения в промышленном окружении. В главе 7 мы перейдем к реали-
зации этой задачи с помощью Ansible.

Браузер

База данных
SQLite

Локальный
диск

Глава 7
Развертывание Mezzanine

с помощью Ansible

Пришло время написать сценарий Ansible для развертывания Mezzanine
на сервере. Мы проделаем это шаг за шагом. Но если вы относитесь к
тому типу людей, которые начинают читать с конца книги, чтобы уз-
нать, чем все закончится, то в конце главы в примере 7.27 вы увидите
сценарий полностью. Он также доступен в репозитории GitHub. Прежде
чем запустить его, прочитайте файл README.

Мы старались оставаться как можно ближе к оригинальным сцена-
риям, которые написал Стефан МакДональд (Stephen McDonald), автор
Mezzanine1.

Вывод списка задач в сценарии
Прежде чем углубиться в недра нашего сценария, давайте взглянем на
него с высоты. Утилита ansible-playbook поддерживает параметр --list-
tasks. Он позволяет получить список всех задач, объявленных в сцена-
рии. Вот как можно использовать этот параметр:

$ ansible-playbook --list-tasks mezzanine.yml

Пример 7.1 демонстрирует вывод этой команды для сценария
mezzanine.yml, приведенного в примере 7.27.

Пример 7.1. Список задач в сценарии Mezzanine

 playbook: mezzanine.yml
 play #1 (web): Deploy mezzanine TAGS: []
 tasks:
 Install apt packages TAGS: []
 Create project path TAGS: []
 Create a logs directory TAGS: []
 Check out the repository on the host TAGS: []

1	 В состав дистрибутива Mezzanine больше не входит сценарий Fabric для автоматизации развер-
тывания.

136    Глава 7. Развертывание Mezzanine с помощью Ansible

 Create python3 virtualenv TAGS: []
 Copy requirements.txt to home directory TAGS: []
 Install packages listed in requirements.txt TAGS: []
 Create project locale TAGS: []
 Create a DB user TAGS: []
 Create the database TAGS: []
 Ensure config path exists TAGS: []
 Create tls certificates TAGS: []
 Remove the default nginx config file TAGS: []
 Set the nginx config file TAGS: []
 Enable the nginx config file TAGS: []
 Set the supervisor config file TAGS: []
 Install poll twitter cron job TAGS: []
 Set the gunicorn config file TAGS: []
 Generate the settings file TAGS: []
 Apply migrations to create the database, collect static content TAGS: []
 Set the site id TAGS: []
 Set the admin password TAGS: []

Это простой способ выяснить, какие действия производятся сцена-
рием.

Организация устанавливаемых файлов
Как уже говорилось, Mezzanine развертывается поверх Django. В терми-
нологии Django веб-приложение называется проектом, и мы должны
дать ему имя. Пусть это будет mezzanine_example.

Наш сценарий производит установку на машину Vagrant и помещает
файлы в домашний каталог пользователя Vagrant.

Пример 7.2. Структура каталогов в /home/vagrant

.
|---- logs
|---- mezzanine
| |___ mezzanine_example
|____ .virtualenvs
 |___ mezzanine_example

В примере 7.2 показана соответствующая структура каталогов внутри
/home/vagrant:

•	 /home/vagrant/mezzanine_example – каталог верхнего уровня, куда
будет копироваться исходный код из репозитория в GitHub;

•	 /home/vagrant/.virtualenvs/mezzanine_example – каталог виртуаль-
ного окружения Python (virtualenv), куда будут устанавливаться
все дополнительные пакеты на языке Python;

Переменные и скрытые переменные    137

•	 /home/vagrant/logs – каталог для хранения журналов, создаваемых
приложением Mezzanine.

Переменные и скрытые переменные
Как показано в примере 7.3, сценарий определяет довольно много пе-
ременных.

Пример 7.3. Определения переменных

vars:
 user: "{{ ansible_user }}"
 proj_app: mezzanine_example
 proj_name: "{{ proj_app }}"
 venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
 venv_path: "{{ venv_home }}/{{ proj_name }}"
 proj_path: "{{ ansible_env.HOME }}/mezzanine/{{ proj_name }}"
 settings_path: "{{ proj_path }}/{{ proj_name }}"
 reqs_path: requirements.txt
 manage: "{{ python }} {{ proj_path }}/manage.py"
 live_hostname: 192.168.33.10.nip.io
 domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io
 repo_url: git@github.com:ansiblebook/mezzanine_example.git
 locale: 'en_US.UTF-8'
 # Переменные ниже отсутствуют в сценарии fabfile.py установки Mezzanine
 # но мы добавили их для удобства
 conf_path: /etc/nginx/conf
 tls_enabled: true
 python: "{{ venv_path }}/bin/python"
 database_name: "{{ proj_name }}"
 database_user: "{{ proj_name }}"
 database_host: localhost
 database_port: 5432
 gunicorn_procname: gunicorn_mezzanine

vars_files:
 - secrets.yml

В большинстве случаев мы старались использовать те же имена пе-
ременных, что и в Fabric-сценарии установки Mezzanine. Мы также до-
бавили несколько переменных, чтобы сделать процесс более прозрач-
ным. Например, сценарии Fabric используют переменную proj_name для
хранения имени базы данных и имени пользователя базы данных. Мы
предпочитаем задавать вспомогательные переменные, такие как data-
base_name и database_user, и определять их через proj_name.

138    Глава 7. Развертывание Mezzanine с помощью Ansible

Отметим несколько важных моментов. Во-первых, обратите внима-
ние, как можно определить одну переменную на основе другой. Напри-
мер, переменная venv_path определяется на основе переменных venv_home
и proj_name.

Во-вторых, обратите внимание, как можно сослаться на факты Ansible
в этих переменных. Например, переменная venv_home определена на ос-
нове факта ansible_env, получаемого из каждого хоста.

И наконец, обратите внимание, что мы определили несколько пере-
менных в отдельном файле secrets.yml:

vars_files:
 - secrets.yml

Этот файл содержит такие данные, как пароли и токены, и они долж-
ны оставаться конфиденциальными. В репозитории на GitHub этот
файл отсутствует. Вместо него имеется файл secrets.yml.example. Вот как
он выглядит:

db_pass: e79c9761d0b54698a83ff3f93769e309
admin_pass: 46041386be534591ad24902bf72071B
secret_key: b495a05c396843b6b47ac944a72c92ed
nevercache_key: b5d87bb4e17c483093296fa321056bdc

Вы должны создать приложение Twitter по адресу: https://dev.twitter.com
чтобы получить учетные данные для интеграции Mezzanine с Twitter.
#
Подробности об интеграции Mezzanine с Twitter приводятся по адресу:
https://mezzanine.readthedocs.io/en/latest/twitter-integration.html
twitter_access_token_key: 80b557a3a8d14cb7a2b91d60398fb8ce
twitter_access_token_secret: 1974cf8419114bdd9d4ea3db7a210d90
twitter_consumer_key: 1f1c627530b34bb58701ac81ac3fad51
twitter_consumer_secret: 36515c2b60ee4ffb9d33d972a7ec350a

Чтобы воспользоваться им, скопируйте файл secrets.yml.example в se-
crets.yml и измените его так, чтобы он содержал данные вашего сайта.

Обратите внимание, что secrets.yml перечислен в файле
.gitignore репозитория Git, чтобы предотвратить случайное
сохранение этих данных в публичном репозитории. Луч-
ше всего воздержаться от копирования незашифрованных
данных в репозиторий, чтобы избежать рисков, связанных с
безопасностью. Это всего лишь один из способов обеспече-
ния секретности данных. Их также можно передавать через
переменные окружения. Другой способ, описанный в главе 8,
заключается в использовании версии файла secrets.yml, за-
шифрованной при помощи ansible-vault.

Добавление выражения become в задачу    139

Установка большого количества пакетов
Нам потребуется установить два типа пакетов, чтобы развернуть
Mezzanine: системные пакеты и несколько пакетов для Python. Посколь-
ку мы собираемся развертывать приложение в Ubuntu, будем использо-
вать для установки системных пакетов диспетчер apt, а для установки
пакетов Python – диспетчер pip.

Устанавливать системные пакеты обычно проще, чем пакеты Python,
потому что они созданы для непосредственного использования
операционной системой. Однако в репозиториях системных пакетов
зачастую отсутствуют новейшие версии библиотек для Python, которые
нам необходимы. Поэтому их мы будем устанавливать отдельно. Это
компромисс между стабильностью и использованием новейших и са-
мых лучших версий.

В примере 7.4 показана задача, которую мы используем для установ-
ки системных пакетов.

Пример 7.4. Установка системных пакетов

 - name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg:
 - acl
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - postgresql
 - python3-dev
 - python3-pip
 - python3-venv
 - python3-psycopg2
 - supervisor

Когда устанавливается несколько пакетов, Ansible передает весь спи-
сок модулю apt, а модуль вызовет программу apt только один раз, тоже
передав ей весь список устанавливаемых пакетов целиком. Модуль apt
способен обрабатывать такие списки.

Добавление выражения become в задачу
В примерах сценариев в главе 3 нам требовалось, чтобы сценарий цели-
ком выполнялся с привилегиями пользователя root, поэтому мы добав-

140    Глава 7. Развертывание Mezzanine с помощью Ansible

ляли в операции выражение become: true. При развертывании Mezzanine
большинство задач будет выполняться с привилегиями пользователя,
от лица которого устанавливается SSH-соединение с хостом, а не root.
Поэтому мы должны приобретать привилегии root не для всей опера-
ции, а только для определенных задач.

Для этого можно добавить выражение become: true в задачи, которые
необходимо выполнить с привилегиями root, как в примере 7.4. Для
большей наглядности Бас предпочитает добавлять become: true прямо
под - name:.

Обновление кеша диспетчера пакетов apt
Ubuntu поддерживает кеш имен всех apt-пакетов, доступных в архи-
ве пакетов Ubuntu. Представьте, что вы пытаетесь установить пакет с
именем libssl-dev. Вы можете использовать программу apt-cache, чтобы
запросить из кеша информацию об известной версии этой программы:

$ apt-cache policy libssl-dev

Все примеры команд в этом разделе выполняются на удален-
ном хосте (Ubuntu), а не на управляющей машине.

Результат показан в примере 7.5.

Пример 7.5. Вывод apt-cache

libssl-dev:
 Installed: (none)
 Candidate: 1.1.1f-1ubuntu2.4
 Version table:
 1.1.1f-1ubuntu2.4 500
 500 http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages
 1.1.1f-1ubuntu2.3 500
 500 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages
 1.1.1f-1ubuntu2 500
 500 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages

Как видите, этот пакет не был установлен. Согласно информации из
кеша, на локальной машине новейшая версия – 1.1.1f-1ubuntu2.4. Мы
также получили информацию о местонахождении архива пакета.

В некоторых случаях, когда проект Ubuntu выпускает новую версию
пакета, он удаляет устаревшую версию из архива. Если локальный кеш
apt на сервере Ubuntu не был обновлен, он попытается установить па-
кет, которого нет в архиве.

Извлечение проекта из репозитория Git    141

Продолжая пример, предположим, что мы решили установить пакет
libssl-dev:

$ sudo apt-get install libssl-dev

Если версия 1.1.1f-1ubuntu2.4 больше не доступна в архиве пакетов,
мы увидим сообщение об ошибке.

Привести локальный кеш пакетов apt в актуальное состояние можно
командой apt-get update. Вызывая модуль apt в Ansible, ему необходимо
передать аргумент update_cache: true, чтобы обеспечить поддержание
локального кеша apt в актуальном состоянии, как это показано в при-
мере 7.4.

Обновление кеша занимает некоторое время, а мы можем запускать
сценарий много раз подряд для отладки, поэтому, чтобы избежать не-
нужных затрат времени на обновление кеша, можно передать модулю
аргумент cache_valid_time. Он разрешает обновление кеша, только если
тот старше установленного порогового значения. В примере 7.4 исполь-
зуется аргумент cache_valid_time: 3600, который разрешает обновление
кеша, только если он старше 3600 с (1 час).

Извлечение проекта из репозитория Git
Хотя Mezzanine можно использовать, не написав ни строчки кода, од-
ной из сильных сторон этой системы является то, что она написана с
использованием фреймворка Django, который, в свою очередь, служит
прекрасной платформой для веб-приложений на Python. Если вам про-
сто нужна система управления контентом (CMS), тогда обратите вни-
мание на что-нибудь вроде WordPress. Но если вы пишете специализи-
рованное приложение, включающее функциональность CMS, то вам как
нельзя лучше подойдет Mezzanine.

В ходе развертывания вам потребуется получить из репозитория Git
код вашего Django-приложения. Выражаясь языком Django, репозито-
рий должен хранить проект. Я создал репозиторий в GitHub (https://oreil.
ly/HtoNP) с проектом Django, содержащий все необходимые файлы. Этот
проект и будет развертывать наш сценарий.

С помощью программы mezzanine-project, которая поставляется вместе
с Mezzanine, мы создали файлы проекта, как показано ниже:

$ mezzanine-project mezzanine_example
$ chmod +x mezzanine_example/manage.py

В нашем репозитории нет никаких конкретных Django-приложений.
Там содержатся только файлы, необходимые для проекта. В реальных
условиях этот репозиторий содержал бы подкаталоги с дополнительны-
ми Django-приложениями.

https://oreil.ly/HtoNP
https://oreil.ly/HtoNP

142    Глава 7. Развертывание Mezzanine с помощью Ansible

В примере 7.6 показано, как использовать модуль git для извлечения
проекта из удаленного репозитория Git.

Пример 7.6. Извлечение проекта из репозитория Git

 - name: Check out the repository on the host
 git:
 repo: "{{ repo_url }}"
 dest: "{{ proj_path }}"
 version: master
 accept_hostkey: true

Мы открыл доступ к репозиторию для всех желающих, чтобы чита-
тели смогли обращаться к нему, но в реальной жизни вам придется об-
ращаться к закрытым репозиториям Git по SSH. Поэтому мы настрои-
ли переменную repo_url для использования схемы, которая клонирует
репозиторий по SSH:

repo_url: git@github.com:ansiblebook/mezzanine_example.git

Если вы собираетесь опробовать примеры на своем компьютере, то
для запуска сценария вы должны создать учетную запись на GitHub
(https://github.com/signup):

1)	 добавить открытый ключ SSH в свою учетную запись на GitHub
(https://github.com/settings/keys);

2)	 запустить SSH-агента на управляющей машине:
							 $ eval $(ssh-agent)

3)	 добавить свой закрытый ключ SSH в SSH-агента:
							 $ ssh-add <путь к закрытому ключу>

В случае успеха следующая команда выведет открытый ключ SSH,
только что добавленный вами:

$ ssh-add -L

Вывод должен выглядеть примерно так:

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIN1/YRlI7Oc+KyM6NFZt7fb7pY+btItKHMLbZhdbwhj2

Чтобы включить агента перенаправления, добавьте следующие стро-
ки в файл ansible.cfg:

[ssh_connection]
ssh_args = -o ForwardAgent=yes

Проверить работоспособность агента перенаправления можно с
помощью Ansible, как показано ниже:

$ ansible web -a "ssh-add -L"

https://github.com/signup
https://github.com/settings/keys

Установка Mezzanine и других пакетов в virtualenv    143

Эта команда должна вывести то же самое, что команда ssh-add -L на
вашей локальной машине.

Нелишним также будет убедиться в достижимости сервера GitHub по
SSH:

$ ansible web -a "ssh -T git@github.com"

В случае успеха ее вывод должен выглядеть примерно так:

web | FAILED | rc=1 >>
Hi bbaassssiiee! You've successfully authenticated, but GitHub does not provide
shell access.

Пусть вас не смущает слово FAILED в выводе – сам факт получения со-
общения от сервера GitHub уже говорит о том, что все в порядке.

Кроме URL репозитория в параметре repo и пути к репозиторию в па-
раметре dest, нужно также передать дополнительный параметр accept_
hostkey, связанный с проверкой ключей хоста. (Агента перенаправления
SSH и проверку ключей хоста мы подробно рассмотрим в главе 20.)

Установка Mezzanine и других пакетов в virtualenv
Мы можем устанавливать пакеты Python от лица пользователя root на
уровне всей системы, но лучше устанавливать их в изолированное окру-
жение, чтобы избежать конфликтов с системными пакетами Python.
В Python подобные изолированные окружения называют virtualenv.
Пользователь может создать большое количество окружений virtualenv
и установить в них пакеты без использования привилегий пользовате-
ля root. (Напомню, что мы собираемся установить некоторые пакеты
для Python, чтобы получить самые свежие версии.)

Модуль pip в Ansible позволяет создавать такие изолированные окру-
жения virtualenv и устанавливать в них пакеты.

В примере 7.7 демонстрируется использование модуля pip для созда-
ния virtualenv в Python 3 и установки последних версий инструментов
поддержки.

Пример 7.7. Создание virtualenv в Python 3

 - name: Create python3 virtualenv
 pip:
 name:
 - pip
 - wheel
 - setuptools
 state: latest
 virtualenv: "{{ venv_path }}"
 virtualenv_command: /usr/bin/python3 -m venv

144    Глава 7. Развертывание Mezzanine с помощью Ansible

В примере 7.8 показаны две задачи, устанавливающие пакеты Python
в изолированное окружение virtualenv.

Пример 7.8. Установка пакетов Python

 - name: Copy requirements.txt to home directory
 copy:
 src: requirements.txt
 dest: "{{ reqs_path }}"
 mode: '0644'

 - name: install packages listed in requirements.txt
 pip:
 virtualenv: "{{ venv_path }}"
 requirements: "{{ reqs_path }}"

На практике в проектах Python принято перечислять зависимости
пакетов в файле с именем requirements.txt. И действительно, репозиторий
в нашем примере с системой Mezzanine содержит файл requirements.txt.
Его содержимое приводится в примере 7.9.

Пример 7.9. requirements.txt

Mezzanine==4.3.1

Обратите внимание, что в файле requirements.txt указана конкретная
версия пакета Python Mezzanine (4.3.1). В этом файле отсутствуют дру-
гие пакеты Python, которые мы должны установить, поэтому мы явно
перечислим их в файле requirements.txt в каталоге со сценариями, кото-
рый затем скопируем на хост.

Ansible позволяет указать разрешения для файлов, использу-
емых несколькими модулями, включая file, copy и template. Раз-
решения можно задавать в символическом виде (например:
'u+rwx' или 'u=rw,g=r,o=r'). Для тех, кто имеет опыт использова-
ния /usr/bin/chmod, напомним, что на самом деле разрешения
являются восьмеричными числами, поэтому, задавая разреше-
ния в числовом виде, обязательно добавляйте начальный ноль,
чтобы YAML-парсер в Ansible понял, что это восьмеричное чис-
ло (например, 0644 или 01777), или заключайте число в кавыч-
ки (например, '644' или '1777'), чтобы Ansible получила строку,
которую можно преобразовать в число. Если передать Ansible
число без соблюдения одного из этих правил, то она интерпре-
тирует его как десятичное число, что приведет к неожиданным
результатам. Лучшей практикой, помогающей избежать неод-
нозначности, считается явное определение наборов разреше-
ний для каждого файла в одинарных кавычках и со сброшен-
ными специальными битами (suid, segid), таких как '0755'.

Установка Mezzanine и других пакетов в virtualenv    145

Для всех остальных зависимостей будут установлены самые послед-
ние версии.

С другой стороны, если бы понадобилось зафиксировать версии всех
пакетов, то мы могли бы организовать это несколькими способами, на-
пример можно создать файл requirements.txt и перечислить в нем паке-
ты с требуемыми версиями. Пример такого файла приводится в приме-
ре 7.10.

Пример 7.10. Пример файла requirements.txt

beautifulsoup4==4.9.3
bleach==3.3.0
certifi==2021.5.30
chardet==4.0.0
Django==1.11.29
django-appconf==1.0.4
django-compressor==2.4.1
django-contrib-comments==2.0.0
filebrowser-safe==0.5.0
future==0.18.2
grappelli-safe==0.5.2
gunicorn==20.1.0
idna==2.10
Mezzanine==4.3.1
oauthlib==3.1.1
packaging==21.0
Pillow==8.3.1
pkg-resources==0.0.0
psycopg2==2.9.1
pyparsing==2.4.7
python-memcached==1.59
pytz==2021.1
rcssmin==1.0.6
requests==2.25.1
requests-oauthlib==1.3.0
rjsmin==1.1.0
setproctitle==1.2.2
six==1.16.0
soupsieve==2.2.1
tzlocal==2.1
urllib3==1.26.6
webencodings==0.5.1

Если бы у нас уже имелось готовое изолированное окружение
virtualenv с установленными в него пакетами, то мы могли бы восполь-
зоваться командой pip freeze, чтобы вывести список установленных па-

146    Глава 7. Развертывание Mezzanine с помощью Ansible

кетов. Например, если окружение virtualenv находится в ~/.virtualenvs/
mezzanine_example, то активировать его и сохранить список установлен-
ных пакетов в файл requirements.txt можно было бы так:

$ source .virtualenvs/mezzanine_example/bin/activate
$ pip freeze > requirements.txt

В примере 7.11 показано, как можно задать имена пакетов и их вер-
сии в виде списка словарей. В этом примере модуль pip выполнит обход
списка словарей и с помощью with_items получит отдельные элементы в
виде item.name и item.version.

Пример 7.11. Определение имен пакетов и их версий

- name: Install python packages with pip
 pip:
 virtualenv: "{{ venv_path }}"
 name: "{{ item.name }}"
 version: "{{ item.version }}"
 with_items:
 - {name: mezzanine, version: '4.3.1' }
 - {name: gunicorn, version: '20.1.0' }
 - {name: setproctitle, version: '1.2.2' }
 - {name: psycopg2, version: '2.9.1' }
 - {name: django-compressor, version: '2.4.1' }
 - {name: python-memcached, version: '1.59' }

Обратите внимание на одинарные кавычки вокруг номеров версий:
они гарантируют интерпретацию номеров как литералов без округле-
ния в некоторых пограничных случаях.

Короткое отступление: составные аргументы
задач
Вызывая модуль, ему можно передать аргумент в виде строки (отлично
подходит для особых случаев). Так, в примере 7.11 мы могли бы пере-
дать модулю pip строковый аргумент:

- name: Install package with pip
 pip: virtualenv={{ venv_path }} name={{ item.name }} version={{ item.version }}

Если вам не нравятся длинные строки, то строку аргумента можно
разбить на несколько строк с помощью функции свертки строк в YAML:

- name: Install package with pip
 pip: >
 virtualenv={{ venv_path }}

Короткое отступление: составные аргументы задач    147

 name={{ item.name }}
 version={{ item.version }}

Ansible поддерживает еще один способ разбиения команды вызова
модуля на несколько строк. Вместо строкового аргумента можно пере-
дать словарь, в котором ключи соответствуют именам переменных. То
есть пример 7.11 мог бы выглядеть так:

- name: Install package with pip
 pip:
 virtualenv: "{{ venv_path }}"
 name: "{{ item.name }}"
 version: "{{ item.version }}"

Подход на основе словарей также очень удобно использовать для
вызова модулей, принимающих составные аргументы. Составной ар-
гумент – это аргумент, включающий список или словарь. Хорошим при-
мером модуля с составными аргументами может служить модуль uri,
который посылает веб-запросы. В примере 7.12 показано, как можно
вызвать модуль, принимающий список в параметре body.

Пример 7.12. Вызов модуля с составными аргументами

- name: Login to a form based webpage
 uri:
 url: 'https://your.form.based.auth.example.com/login.php'
 method: POST
 body_format: form-urlencoded
 body:
 name: your_username
 password: 'your_password'
 enter: Sign in
 status_code: 302
 register: login

Передача аргументов в виде словарей вместо строк – широко
распространенная практика, позволяющая избежать ошибок с пробела-
ми, которые могут возникнуть при передаче необязательных аргумен-
тов, и она очень хорошо зарекомендовала себя при работе с системами
управления версиями. Но самое главное преимущество такой формы
записи – это чистый синтаксис YAML, и все парсеры и линтеры YAML
понимают ее. Форма записи со знаком равенства (=) считается устарев-
шей и нежелательной.

Если вы хотите разбить аргументы на несколько строк без переда-
чи составных аргументов, то можете самостоятельно выбрать, в какой
форме это сделать. Это дело вкуса. Бас обычно предпочитает словари,
но в книге используются оба варианта.

148    Глава 7. Развертывание Mezzanine с помощью Ansible

Настройка базы данных
Когда среда Django действует в режиме разработки, то в качестве базы
данных она использует SQLite. В этом случае автоматически создается
файл базы данных, если такового не существует.

Чтобы задействовать систему управления базами данных, такую как
Postgres, сначала нужно создать учетную запись пользователя, владе-
ющего базой данных, а затем саму базу данных внутри Postgres. Чуть
позже мы настроим Mezzanine, используя данные этого пользователя.

Ansible поставляется с модулями postgresql_user и postgresql_db для соз-
дания учетных записей пользователей и баз данных внутри Postgres.
В примере 7.13 показано, как пользоваться этими модулями в сценариях.

При создании базы данных мы настраиваем региональные настрой-
ки lc_ctype и lc_collate. А чтобы гарантировать установку региональных
настроек в системе, мы используем модуль locale_gen.

Пример 7.13. Создание базы данных и пользователя базы данных

 - name: Create project locale
 become: true
 locale_gen:
 name: "{{ locale }}"

 - name: Create a DB user
 become: true
 become_user: postgres
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"

 - name: Create the database
 become: true
 become_user: postgres
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0

Обратите внимание на выражения become: true и become_user: postgres
в двух последних задачах. Когда выполняется установка Postgres в
Ubuntu, в ее процессе создается пользователь с именем postgres, облада-
ющий привилегиями администратора для данной установки. Отметьте
также, что по умолчанию пользователь root не обладает привилегиями

Создание файла local_settings.py из шаблона    149

администратора в Postgres. По этой причине в сценарии необходимо
выполнить команду become для пользователя Postgres, чтобы выполнять
административные задачи, такие как создание пользователей и баз
данных.

При создании базы данных мы устанавливаем кодировку (UTF8) и
определяем региональные настройки (LC_CTYPE, LC_COLLATE) для базы дан-
ных. Поскольку в сценарии определяются региональные настройки, мы
использовали шаблон template01.

Создание файла local_settings.py из шаблона
Все настройки проекта Django должны находиться в файле settings.py.
Mezzanine, следуя общему правилу, разбивает их на две группы:

•	 настройки, одинаковые для всех установок (settings.py);
•	 настройки, разные для разных установок (local_settings.py).

Мы определили настройки, общие для всех установок, в файле settings.
py в репозитории проекта (https://oreil.ly/HtoNP).

Файл settings.py содержит код на Python, который загружает файл
local_settings.py с настройками, зависящими от установки. Файл .gitignore
настроен так, чтобы игнорировать local_settings.py, потому что разра-
ботчики часто создают свои версии этого файла с настройками для их
окружений разработки.

Нам тоже нужно создать файл local_settings.py и выгрузить его на уда-
ленный хост. В примере 7.14 приводится шаблон Jinja2, который мы ис-
пользуем.

Пример 7.14. local_settings.py.j2

Эти настройки уникальные и никому не должны передаваться.
SECRET_KEY = "{{ secret_key }}"
NEVERCACHE_KEY = "{{ nevercache_key }}"
ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

DATABASES = {
 "default": {
 # Может завершаться на "postgresql_psycopg2", "mysql", "sqlite3" или
"oracle".
 "ENGINE": "django.db.backends.postgresql_psycopg2",
 # Имя БД или путь к файлу БД, если используется sqlite3.
 "NAME": "{{ proj_name }}",
 # Не используется с sqlite3.
 "USER": "{{ proj_name }}",

1	 За более подробной информацией о шаблонах баз данных обращайтесь к документации
Postgres (https://oreil.ly/GhjeJ).

https://oreil.ly/HtoNP
https://oreil.ly/GhjeJ

150    Глава 7. Развертывание Mezzanine с помощью Ansible

 # Не используется с sqlite3.
 "PASSWORD": "{{ db_pass }}",
 # Для локального хоста можно указать пустую строку. Не используется с sqlite3.
 "HOST": "127.0.0.1",
 # Пустая строка соответствует порту по умолчанию. Не используется с sqlite3.
 "PORT": "",
 }
}

CACHE_MIDDLEWARE_KEY_PREFIX = "{{ proj_name }}"
CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": "127.0.0.1:11211",
 }
}

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Большая часть этого шаблона проста и понятна. Он использует син-
таксис {{ variable }} для вставки значений переменных, таких как secret_
key, nevercache_key, proj_name и db_pass. Единственная неочевидная вещь –
это строка, приведенная в примере 7.15:

Пример 7.15. Использование цикла for в шаблоне Jinja2

ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

Если вернуться к определению переменной, то можно увидеть, что
переменная domains определена так:

domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io

Система Mezzanine будет отвечать только на запросы к серве-
рам, перечисленным в списке в переменной domains, в нашем слу-
чае http://192.168.33.10.nip.io и http://www.192.168.33.10.nip.io. Если в
Mezzanine поступит запрос к другому хосту, сайт вернет ошибку «Bad
Request (400)».

Нам нужно, чтобы эта строка в сгенерированном файле выглядела
так:

ALLOWED_HOSTS = ["192.168.33.10.nip.io", "www.192.168.33.10.nip.io"]

Для этого можно использовать цикл for, как показано в примере 7.15.
Но обратите внимание, что результат получается не совсем тот, кото-
рого мы добиваемся, – получающаяся строка содержит завершающую
запятую:

Создание файла local_settings.py из шаблона    151

ALLOWED_HOSTS = ["192.168.33.10.nip.io", "www.192.168.33.10.nip.io",]

Однако Python вполне устраивает наличие завершающей запятой в
списке, и мы можем оставить все как есть.

Рассмотрим синтаксис цикла for в Jinja2. Чтобы было удобнее, разо-
бьем его на несколько строк:

ALLOWED_HOSTS = [
{% for domain in domains %}
 "{{ domain }}",
{% endfor %}
]

Что такое nip.io?
Вероятно, вы заметили, что используемые доменные имена выглядят не-
много странно: 192.168.33.10.nip.io и www.192.168.33.10.nip.io. Они включа-
ют также IP-адреса.
Переходя на сайт, вы практически всегда вводите в адресную строку бра-
узера доменное имя, например http://www.ansiblebook.com, вместо его IP-
адреса http://151.101.192.133. Когда мы создаем сценарий развертывания
Mezzanine в Vagrant, то должны настроить доступные имена или доменные
имена.
Проблема заключается в том, что у нас нет DNS-записи, отобража-
ющей имя виртуальной машины Vagrant в IP-адрес (в нашем случае
192.168.33.10). Но ничто не мешает нам создать DNS-запись. Например,
можно создать DNS-запись mezzanine-internal.ansiblebook.com, указываю-
щую на 192.168.33.10.
Однако, чтобы создать DNS-имя, которое разрешается в определен-
ный IP-адрес, можно воспользоваться удобной службой nip.io. Она пре-
доставляется бесплатно, и нам не придется создавать собственных
DNS-записей. Если AAA.BBB.CCC.DDD – это IP-адрес, тогда AAA.BBB.CCC.
DDD.nip.io – это DNS-запись, разрешающаяся в адрес AAA.BBB.CCC.DDD.
Например, 192.168.33.10.nip.io разрешается в 192.168.33.10. Кроме того,
www.192.168.33.10.nip.io тоже разрешается в 192.168.33.10.
Мне кажется, что nip.io – очень удобный инструмент для развертывания
веб-приложений с закрытыми IP-адресами с целью тестирования. С дру-
гой стороны, вы можете просто добавить записи в файл /etc/hosts на ло-
кальной машине. Этот прием будет работать даже в отсутствие подключе-
ния к интернету.

Сгенерированный конфигурационный файл, все еще корректный с
точки зрения Python, будет выглядеть, как показано ниже:

ALLOWED_HOSTS = [
 "192.168.33.10.nip.io",

152    Глава 7. Развертывание Mezzanine с помощью Ansible

 "www.192.168.33.10.nip.io",
]

Обратите внимание, что цикл for должен завершаться выражением
{% endfor %}. Также отметьте, что инструкции for и endfor заключены в
операторные скобки {% %}. Они отличаются от скобок {{ }}, которые мы
используем для подстановки переменных.

Все переменные и факты, заданные в сценарии, доступны внутри
шаблона Jinja2, т. е. нет необходимости явно передавать переменные
в шаблон.

Выполнение команд django-manage
Приложения Django используют особый сценарий manage.py (https://oreil.
ly/BrUy8) для выполнения следующих административных действий:

•	 создания таблиц в базе данных;
•	 выполнения миграций баз данных;
•	 загрузки начальных данных в базу из файла;
•	 записи данных из базы в файл;
•	 копирования статических данных в соответствующий каталог.

В дополнение к встроенным командам, которые поддержива-
ет manage.py, приложения Django могут добавлять свои команды.
Mezzanine, например, добавляет свою команду createdb, которая исполь-
зуется для приведения базы данных в исходное состояние и копирова-
ния статических ресурсов в надлежащее место. Официальные сценарии
Fabric поддерживают аналогичные действия:

$ manage.py createdb --noinput --nodata

В состав Ansible входит модуль django_manage, который запускает коман
ды manage.py. Мы можем использовать его так:

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

К сожалению, команда createdb, которую добавляет Mezzanine, не явля-
ется идемпотентной. При повторном запуске она завершится ошибкой:

TASK [initialize the database] **
fatal: [web]: FAILED! => {"changed": false, "cmd": "./manage.py createdb --
noinput --nodata", "msg": "\n:stderr: CommandError: Database already create
d, you probably want the migrate command\n", "path": "/home/vagrant/.virtua
lenvs/mezzanine_example/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin", "syspath": ["/tmp/ans

https://oreil.ly/BrUy8
https://oreil.ly/BrUy8

Запуск своих сценариев на Python в контексте приложения    153

ible_django_manage_payload_4xfy5e7i/ansible_django_manage_payload.zip", "/u
sr/lib/python38.zip", "/usr/lib/python3.8", "/usr/lib/python3.8/lib-dynload
", "/usr/local/lib/python3.8/dist-packages", "/usr/lib/python3/dist-package
s"]}

К счастью, команда createdb эквивалентна двум идемпотентным
встроенным командам из manage.py.

migrate
	 Создает и обновляет таблицы базы данных для моделей Django.

collectstatic
	 Копирует статические ресурсы в надлежащие каталоги.

Используя эти команды, можно реализовать идемпотентную задачу:

- name: Apply migrations to create the database, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 loop:
 - syncdb
 - collectstatic

Запуск своих сценариев на Python в контексте
приложения
Для инициализации нашего приложения необходимо внести два изме-
нения в базу данных:

1)	 создать объект модели Site (https://oreil.ly/COd8x), содержащий домен-
ное имя сайта (в нашем случае 192.168.33.10.nip.io);

2)	 задать имя пользователя с правами администратора и пароль.

Несмотря на то что все это можно сделать с помощью простых SQL-
команд, обычно это делается из кода на Python. Именно так решают эту
задачу сценарии Fabric в Mezzanine, и мы тоже пойдем этим путем.

Здесь есть два подводных камня. Сценарии на Python должны запус
каться в контексте созданного изолированного окружения, и окруже-
ние Python должно быть настроено так, чтобы сценарий импортировал
файл settings.py из каталога ~/mezzanine/mezzanine_example/mezzanine_
example.

Когда нам требуется выполнить свой код на Python, мы обычно пи-
шем свой модуль для Ansible. Однако, насколько нам известно, Ansible
не позволяет запускать модули в контексте virtualenv. Поэтому данный
вариант исключается.

https://oreil.ly/COd8x

154    Глава 7. Развертывание Mezzanine с помощью Ansible

Вместо этого мы используем модуль script. Он копируется поверх не-
стандартного сценария и выполняет его. Я написал два сценария: один
для создания записи Site, а другой для создания учетной записи поль-
зователя с правами администратора.

Модулю script можно передавать аргументы командной строки и ана-
лизировать их. Но мы решили передавать аргументы через переменные
окружения. Нам не хотелось передавать пароли через командую строку
(их можно увидеть в списке процессов, который выводит команда ps), а
кроме того, переменные окружения легче проанализировать в сцена-
риях, чем аргументы командной строки.

Ansible позволяет устанавливать переменные окружения по-
средством выражения environment, которое принимает словарь
с именами и значениями переменных. Выражение environment
можно добавить в любую задачу, если это не script.

Для запуска сценариев в контексте изолированного окружения
virtualenv также необходимо установить переменную path, чтобы пер-
вый найденный выполняемый сценарий на Python оказался внутри
virtualenv. В примере 7.16 показан пример запуска двух сценариев.

Пример 7.16. Использование модуля script для запуска кода на Python

- name: Set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 WEBSITE_DOMAIN: "{{ Uve_hostname }}"

- name: Set the admin password
 script: scripts/setadmin.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

Сами сценарии приводятся в примерах 7.17 и 7.18. Вы найдете их в
каталоге scripts.

Пример 7.17. scripts/setsite.py

#!/usr/bin/env python3
""" Сценарий настраивает домен сайта """

Запуск своих сценариев на Python в контексте приложения    155

Предполагается наличие трех переменных окружения
#
PROJECT_DIR: корневой каталог проекта
PROJECT_APP: имя проекта приложения
WEBSITE_DOMAIN: домен сайта (например, www.example.com)
import os
import sys

Добавить путь к каталогу проекта в переменную окружения PATH
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP']
os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
import django
django.setup()
from django.conf import settings
from django.contrib.sites.models import Site
domain = os.environ['WEBSITE_DOMAIN']
Site.objects.filter(id=settings.SITE_ID).update(domain=domain)
Site.objects.get_or_create(domain=domain)

Пример 7.18. scripts/setadmin.py

#!/usr/bin/env python3
""" Сценарий настраивает учетную запись администратора """
Предполагается наличие трех переменных окружения
#
PROJECT_DIR: каталог проекта (например, ~/projname)
PROJECT_APP: Имя проекта приложения
ADMIN_PASSWORD: пароль администратора
import os
import sys

добавить путь к каталогу проекта в переменную окружения PATH
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP']
os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
import django
django.setup()
from django.contrib.auth import get_user_model
User = get_user_model()
u, _ = User.objects.get_or_create(username='admin')
u.is_staff = u.is_superuser = True
u.set_password(os.environ['ADMIN_PASSWORD'])
u.save()

156    Глава 7. Развертывание Mezzanine с помощью Ansible

Перед импортом django необходимо установить переменную
окружения DJANGO_SETTINGS_MODULE.

Настройка конфигурационных файлов служб
Далее настроим конфигурационный файл для Gunicorn (сервера при-

ложений), NGINX (веб-сервера) и Supervisor (диспетчер процессов),
как показано в примере 7.19. Шаблон конфигурационного файла для
Gunicorn показан в примере 7.21, а шаблон конфигурационного файла
для Supervisor – в примере 7.22.

Пример 7.19. Настройка конфигурационных файлов

- name: Set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ proj_path }}/gunicorn.conf.py"
 mode: '0750'

- name: Set the supervisor config file
 become: true
 template:
 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf
 mode: '0640'
 notify: Restart supervisor

- name: Set the nginx config file
 become: true
 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf
 mode: '0640'
 notify: Restart nginx

Во всех трех случаях конфигурационные файлы генерируются из
шаблонов. Процессы Supervisor и NGINX запускаются с привилегиями
пользователя root (хотя они тут же и понижают свои привилегии), по-
этому нужно выполнить команду become, чтобы получить право доступа
к конфигурационным файлам.

Если конфигурационный файл Supervisor изменится, то Ansible запус
тит обработчик restart supervisor. Если изменится конфигурационный
файл NGINX, то Ansible запустит обработчик restart nginx, как показано
в примере 7.20.

Запуск своих сценариев на Python в контексте приложения    157

Пример 7.20. Обработчики
handlers:

 - name: Restart supervisor
 become: true
 supervisorctl:
 name: "{{ gunicorn_procname }}"
 state: restarted

 - name: Restart nginx
 become: true
 service:
 name: nginx
 state: restarted

Gunicorn имеет конфигурационный файл на языке Python; в нем мы
передаем значения некоторых переменных.

Пример 7.21. templates/gunicorn.conf.py.j2

from multiprocessing import cpu_count

bind = "unix:{{ proj_path }}/gunicorn.sock"
workers = cpu_count() * 2 + 1
errorlog = "/home/{{ user }}/logs/{{ proj_name }}_error.log"
loglevel = "error"
proc_name = "{{ proj_name }}"

Конфигурационный файл Supervisor тоже просто определяет пере-
менные.

Пример 7.22. templates/supervisor.conf.j2

[program:{{ gunicorn_procname }}]
command={{ venv_path }}/bin/gunicorn -c gunicorn.conf.py -p gunicorn.pid \
 {{ proj_app }}.wsgi:application
directory={{ proj_path }}
user={{ user }}
autostart=true
stdout_logfile = /home/{{ user }}/logs/{{ proj_name }}_supervisor
autorestart=true
redirect_stderr=true
environment=LANG="{{ locale }}",LC_ALL="{{ locale }}",LC_LANG="{{ locale }}"

В примере 7.23 приводится единственный шаблон, в котором ис-
пользуется дополнительная логика (кроме подстановки переменных).
Он основан на логике выполнения по условию – если переменная tls_
enabled имеет значение true, то включается поддержка TLS. В шаблоне в
разных местах можно увидеть операторы if:

158    Глава 7. Развертывание Mezzanine с помощью Ansible

{% if tls_enabled %}
...
{% endif %}

В нем также используется Jinja2-фильтр join:

server_name {{ domains|join(", ") }};

Этот фрагмент кода ожидает, что переменная domains содержит список.
Он сгенерирует строку с элементами из domains, перечислив их через за-
пятую. В нашем случае список domains определен так:

domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io

После применения шаблона получаем следующее:

server_name 192.168.33.10.nip.io, www.192.168.33.10.nip.io;

Пример 7.23. templates/nginx.conf.j2

upstream {{ proj_name }} {
 server unix:{{ proj_path }}/gunicorn.sock fail_timeout=0;
}
server {
 listen 80;
 {% if tls_enabled %}
 listen 443 ssl;
 {% endif %}
 server_name {{ domains|join(", ") }};
 server_tokens off;
 client_max_body_size 10M;
 keepalive_timeout 15;
 {% if tls_enabled %}
 ssl_certificate conf/{{ proj_name }}.crt;
 ssl_certificate_key conf/{{ proj_name }}.key;
 ssl_session_tickets off;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 ssl_protocols TLSv1.3;
 ssl_ciphers EECDH+AESGCM:EDH+AESGCM;
 ssl_prefer_server_ciphers on;
 {% endif %}
 location / {
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Protocol $scheme;

Активация конфигурации NGINX    159

 proxy_pass http://{{ proj_name }};
 }
 location /static/ {
 root {{ proj_path }};
 access_log off;
 log_not_found off;
 }
 location /robots.txt {
 root {{ proj_path }}/static;
 access_log off;
 log_not_found off;
 }
 location /favicon.ico {
 root {{ proj_path }}/static/img;
 access_log off;
 log_not_found off;
 }
}

Вы можете создавать шаблоны со структурами управления, такими
как циклы for и условные инструкции if/else. Кроме того, Jinja2 поддер-
живает множество функций для преобразования данных из перемен-
ных, фактов и реестров в конфигурационные файлы.

Активация конфигурации NGINX
По соглашениям, принятым в Ubuntu для конфигурационных файлов
NGINX, они должны помещаться в каталог /etc/nginx/sites-available и ак-
тивироваться символической ссылкой в каталоге /etc/nginx/sites-enabled.
(В системах Red Hat – в каталоге /etc/nginx/conf.d.)

Сценарии Fabric для Mezzanine просто копируют конфигурационный
файл непосредственно в sites-enabled. Но мы отклонимся от способа,
принятого в Mezzanine, и используем модуль file для создания симво-
лической ссылки (пример 7.24). Также мы удалим конфигурационный
файл, который пакет NGINX создает в /etc/nginx/sites-enabled/default.

Пример 7.24. Активация конфигурации NGINX

- name: Remove the default nginx config file
 become: true
 file:
 path: /etc/nginx/sites-enabled/default
 state: absent
 notify: Restart nginx

- name: Set the nginx config file
 become: true

160    Глава 7. Развертывание Mezzanine с помощью Ansible

 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf
 mode: '0640'
 notify: Restart nginx

- name: Enable the nginx config file
 become: true
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 mode: '0777'
 notify: Restart nginx

Как показано в примере 7.24, мы использовали модуль file, чтобы со-
здать символическую ссылку и удалить конфигурационный файл по
умолчанию. Этот модуль удобно использовать для создания каталогов,
символических ссылок и пустых файлов; удаления файлов, каталогов и
символических ссылок; а также для настройки таких свойств, как раз-
решения и владение.

Установка сертификатов TLS
В нашем сценарии определяется переменная tls_enabled. Если она полу-
чает значение true, то сценарий установит сертификаты TLS. В нашем
примере мы используем самоподписанный сертификат, поэтому сце-
нарий создаст сертификат, если он не существует. В промышленном
окружении необходимо скопировать существующий сертификат TLS,
который вы получили от центра сертификации.

В примере 7.25 представлены две задачи, которые вовлечены в про-
цесс настройки сертификатов TLS. Модуль file используется, чтобы при
необходимости создать каталог для сертификатов TLS.

Пример 7.25. Установка сертификатов TLS

- name: Ensure config path exists
 become: true
 file:
 path: "{{ conf_path }}"
 state: directory
 mode: '0755'

- name: Create tls certificates
 become: true
 command: >

Установка задания cron для Twitter    161

 openssl req -new -x509 -nodes -out {{ proj_name }}.crt
 -keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 365
 args:
 chdir: "{{ conf_path }}"
 creates: "{{ conf_path }}/{{ proj_name }}.crt"
 when: tls_enabled
 notify: Restart nginx

Обратите внимание, что обе задачи содержат выражение:

when: tls_enabled

Если tls_enabled имеет значение false, то Ansible пропустит задачу.
В Ansible нет модулей для создания сертификатов TLS, поэтому при-

ходится использовать модуль command и с его помощью запускать коман-
ды openssl для создания самоподписанного сертификата. Поскольку ко-
манда очень длинная, мы используем YAML-синтаксис свертки строк с
символом «>», чтобы разбить команду на несколько строк.

Параметр chdir изменяет каталог перед запуском команды. Параметр
creates обеспечивает идемпотентность: Ansible сначала проверит нали-
чие файла {{ conf_path }}/{{ proj_name }}.crt на хосте и, если он существует,
пропустит эту задачу.

Установка задания cron для Twitter
Если выполнить команду manage.py poll_twitter, то Mezzanine извлечет тви-
ты из настроенных учетных записей и поместит их на домашнюю страни-
цу. Сценарии Fabric, поставляемые с Mezzanine, поддерживают актуаль-
ность сообщений с помощью задания cron, которое вызывается каждые
пять минут.

Если в точности следовать за сценариями Fabric, мы должны скопи-
ровать сценарий с заданием cron в каталог /etc/cron.d. Для этого можно
бы использовать модуль template, но в состав Ansible входит модуль cron,
который позволяет создавать и удалять задания cron, что, на наш взгляд,
более изящно. В примере 7.26 представлена задача, которая устанавли-
вает задание cron.

Пример 7.26. Установка задания cron для синхронизации с Twitter

- name: Install poll twitter cron job
 cron:
 name: "poll twitter"
 minute: "*/5"
 user: "{{ user }}"
 job: "{{ manage }} poll_twitter"

Если вручную подключиться к настраиваемой машине по SSH, то
командой crontab -l можно проверить присутствие требуемого задания

162    Глава 7. Развертывание Mezzanine с помощью Ansible

в общем списке. Вот как выглядит это задание после установки на ма-
шине Vagrant:

#Ansible: poll twitter
*/5 * * * * /home/vagrant/.virtualenvs/mezzanine_example/bin/python3 \
/home/vagrant/mezzanine/mezzanine_example/manage.py poll_twitter

Обратите внимание на комментарий в первой строке. Благодаря
таким комментариям модуль cron поддерживает удаление заданий по
именам. Например:

- name: Remove cron job
 cron:
 name: "poll twitter"
 state: absent

Эта задача вызовет модуль cron, который отыщет строку комментария
с указанным именем и удалит задание.

Сценарий целиком
В примере 7.27 представлен полный сценарий во всем своем великоле-
пии.

Пример 7.27. mezzanine.yml: сценарий целиком

- name: Deploy mezzanine
 hosts: web

 vars:
 user: "{{ ansible_user }}"
 proj_app: 'mezzanine_example'
 proj_name: "{{ proj_app }}"
 venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
 venv_path: "{{ venv_home }}/{{ proj_name }}"
 proj_path: "{{ ansible_env.HOME }}/mezzanine/{{ proj_name }}"
 settings_path: "{{ proj_path }}/{{ proj_name }}"
 reqs_path: '~/requirements.txt'
 manage: "{{ python }} {{ proj_path }}/manage.py"
 live_hostname: 192.168.33.10.nip.io
 domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io
 repo_url: 'git@github.com:ansiblebook/mezzanine_example.git'
 locale: 'en_US.UTF-8'
 # Переменные ниже отсутствуют в сценарии fabfile.py установки Mezzanine
 # но я добавил их для удобства
 conf_path: /etc/nginx/conf

Сценарий целиком    163

 tls_enabled: true
 python: "{{ venv_path }}/bin/python3"
 database_name: "{{ proj_name }}"
 database_user: "{{ proj_name }}"
 database_host: localhost
 database_port: 5432
 gunicorn_procname: gunicorn_mezzanine

 vars_files:
 - secrets.yml

 tasks:
 - name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg:
 - acl
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - postgresql
 - python3-dev
 - python3-pip
 - python3-venv
 - python3-psycopg2
 - supervisor

 - name: Create project path
 file:
 path: "{{ proj_path }}"
 state: directory
 mode: '0755'

 - name: Create a logs directory
 file:
 path: "{{ ansible_env.HOME }}/logs"
 state: directory
 mode: '0755'

 - name: Check out the repository on the host
 git:
 repo: "{{ repo_url }}"
 dest: "{{ proj_path }}"

164    Глава 7. Развертывание Mezzanine с помощью Ansible

 version: master
 accept_hostkey: true

 - name: Create python3 virtualenv
 pip:
 name:
 - pip
 - wheel
 - setuptools
 state: latest
 virtualenv: "{{ venv_path }}"
 virtualenv_command: /usr/bin/python3 -m venv

 - name: Copy requirements.txt to home directory
 copy:
 src: requirements.txt
 dest: "{{ reqs_path }}"
 mode: '0644'

 - name: Install packages listed in requirements.txt
 pip:
 virtualenv: "{{ venv_path }}"
 requirements: "{{ reqs_path }}"

 - name: Create project locale
 become: true
 locale_gen:
 name: "{{ locale }}"

 - name: Create a DB user
 become: true
 become_user: postgres
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"

 - name: Create the database
 become: true
 become_user: postgres
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0

 - name: Ensure config path exists

Сценарий целиком    165

 become: true
 file:
 path: "{{ conf_path }}"
 state: directory
 mode: '0755'

 - name: Create tls certificates
 become: true
 command: >
 openssl req -new -x509 -nodes -out {{ proj_name }}.crt
 -keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 365
 args:
 chdir: "{{ conf_path }}"
 creates: "{{ conf_path }}/{{ proj_name }}.crt"
 when: tls_enabled
 notify: Restart nginx

 - name: Remove the default nginx config file
 become: true
 file:
 path: /etc/nginx/sites-enabled/default
 state: absent
 notify: Restart nginx

 - name: Set the nginx config file
 become: true
 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf
 mode: '0640'
 notify: Restart nginx

 - name: Enable the nginx config file
 become: true
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 mode: '0777'
 notify: Restart nginx

 - name: Set the supervisor config file
 become: true
 template:
 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf
 mode: '0640'

166    Глава 7. Развертывание Mezzanine с помощью Ansible

 notify: Restart supervisor

 - name: Install poll twitter cron job
 cron:
 name: "poll twitter"
 minute: "*/5"
 user: "{{ user }}"
 job: "{{ manage }} poll_twitter"

 - name: Set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ proj_path }}/gunicorn.conf.py"
 mode: '0750'

 - name: Generate the settings file
 template:
 src: templates/local_settings.py.j2
 dest: "{{ settings_path }}/local_settings.py"
 mode: '0750'

 - name: Apply migrations to create the database, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 with_items:
 - migrate
 - collectstatic

 - name: Set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 DJANGO_SETTINGS_MODULE: "{{ proj_app }}.settings"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

 - name: Set the admin password
 script: scripts/setadmin.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

 handlers:

Запуск сценария на машине Vagrant    167

 - name: Restart supervisor
 become: true
 supervisorctl:
 name: "{{ gunicorn_procname }}"
 state: restarted

 - name: Restart nginx
 become: true
 service:
 name: nginx
 state: restarted
...

Сценарии могут получаться длиннее, чем хотелось бы, и такие сцена-
рии, в которых все действия и переменные перечислены в одном файле,
сложнее поддерживать. Поэтому этот сценарий следует рассматривать
лишь как промежуточный шаг в процессе обучении работе с Ansible.
В следующей главе будет представлен более удобный способ организа-
ции сценариев.

Запуск сценария на машине Vagrant
Переменные live_hostname и domains в нашем сценарии предполагают, что
хост, на котором должна быть развернута система, доступен по адресу
192.168.33.10. Файл Vagrantfile, что приводится в примере 7.28, настраи-
вает машину Vagrant с этим IP-адресом.

Пример 7.28. Vagrantfile

Vagrant.configure("2") do |this|
 # Агент перенаправления ssh для клонирования из Github.com
 this.ssh.forward_agent = true
 this.vm.define "web" do |web|
 web.vm.box = "ubuntu/focal64"
 web.vm.hostname = "web"
 # Этот IP используется в сценарии
 web.vm.network "private_network", ip: "192.168.33.10"
 web.vm.network "forwarded_port", guest: 80, host: 8000
 web.vm.network "forwarded_port", guest: 443, host: 8443
 web.vm.provider "virtualbox" do |virtualbox|
 virtualbox.name = "web"
 end
 end
 this.vm.provision "ansible" do |ansible|
 ansible.playbook = "mezzanine.yml"
 ansible.verbose = "v"
 ansible.compatibility_mode = "2.0"

168    Глава 7. Развертывание Mezzanine с помощью Ansible

 ansible.host_key_checking = false
 end
end

Развертывание Mezzanine на новой машине Vagrant автоматически
выполняется блоком provision после запуска команды:

$ vagrant up

После развертывания нового сайта Mezzanine он будет доступен по
любому из перечисленных ниже адресов:

•	 http://192.168.33.10.nip.io;
•	 https://192.168.33.10.nip.io;
•	 http://www.192.168.33.10.nip.io;
•	 https://www.192.168.33.10.nip.io.

Устранение проблем
При попытке выполнить сценарий на локальной машине вы можете
столкнуться с несколькими проблемами. В этом разделе описываются
некоторые типичные проблемы и способы их преодоления.

Не получается извлечь файлы из репозитория Git
Вы можете увидеть, как задача с именем «check out the repository on

the host» завершается со следующей ошибкой:

fatal: Could not read from remote repository.

Для ее исправления удалите предопределенный элемент для
192.168.33. 10 из файла ~/.ssh/known_hosts.

Недоступен хост с адресом 192.168.33.10.nip.io
Некоторые маршрутизаторы WiFi имеют встроенный сервер DNS, ко-

торый не распознает имя хоста 192.168.33.10.nip.io. Проверить это мож-
но следующей командой:

dig +short 192.168.33.10.nip.io

Она должна вывести:

192.168.33.10

Если выводится пустая строка, значит, ваш сервер DNS не распознает
имена хостов nip.io. В этом случае добавьте в свой файл /etc/hosts следу-
ющую строку:

192.168.33.10 192.168.33.10.nip.io

Заключение    169

Bad Request (400)
Если ваш браузер вывел сообщение об ошибке «Bad Request (400)»,

это, скорее всего, связано с попыткой достичь сайта Mezzanine с ис-
пользованием имени хоста или IP-адреса, который не включен в список
ALLOWED_HOSTS в конфигурационном файле Mezzanine. Этот список запол-
няется по содержимому переменной domains, объявленной в сценарии
Ansible:

domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io

Заключение
В этом сценарии мы полностью развернули Mezzanine на одной ма-
шине. Теперь вы знаете, как осуществляется развертывание обычного
приложения с поддержкой Mezzanine.

В следующей главе мы рассмотрим более продвинутые функции An-
sible, не использовавшиеся в нашем примере. Мы покажем сценарий,
который устанавливает базу данных и веб-службы на разные хосты, что
часто бывает нужно в реальной ситуации.

Глава 8
Отладка сценариев Ansible

Давайте признаем – ошибки случаются. Ошибка ли это в сценарии, или
же неверное значение в файле конфигурации, в любом случае, что-то
идет не так. В этой главе мы рассмотрим приемы, позволяющие вылав-
ливать эти ошибки.

Информативные сообщения об ошибках
Когда задача Ansible терпит неудачу, она выводит сообщение не в са-
мом удобном формате для человека, пытающегося найти причину про-
блемы. Вот пример сообщения об ошибке, с которой мы столкнулись,
работая над этой книгой:

TASK [mezzanine : check out the repository on the host]

fatal: [web]: FAILED! => {"changed": false, "cmd": "/usr/bin/git ls-remote
'' -h refs/heads/master", "msg": "Warning:********@github.com: Permission
denied (publickey).\r\nfatal: Could not read from remote
repository.\n\nPlease make sure you have the correct access rights\nand the
repository exists.", "rc": 128, "stderr": "Warning: Permanently added
'github.com,140.82.121.4' (RSA) to the list of known
hosts.\r\ngit@github.com: Permission denied (publickey).\r\nfatal: Could not
read from remote repository.\n\nPlease make sure you have the correct access
rights\nand the repository exists.\n", "stderr_lines": ["Warning:
Permanently added 'github.com,140.82.121.4' (RSA) to the list of known
hosts.", "git@github.com: Permission denied (publickey).", "fatal: Could not
read from remote repository.", "", "Please make sure you have the correct
access rights", "and the repository exists."], "stdout": "", "stdout_lines":
[]}

Как отмечается в главе 18, плагин debug может привести это сообще-
ние к более удобочитаемому виду:

TASK [mezzanine : check out the repository on the host] ************************
fatal: [web]: FAILED! => {
 "changed": false,
 "cmd": "/usr/bin/git ls-remote '' -h refs/heads/master",

Отладка ошибок с SSH-подключением    171

 "rc": 128
}
STDERR:
git@github.com: Permission denied (publickey).
fatal: Could not read from remote repository.
Please make sure you have the correct access rights
and the repository exists.

Чтобы включить плагин, достаточно добавить следующую строку в
раздел defaults в файле ansible.cfg:

[defaults]
stdout_callback = debug

Но имейте в виду, что плагин debug выводит не всю информацию; более
подробную информацию можно получить с помощью плагина YAML.

Отладка ошибок с SSH-подключением
Иногда системе Ansible не удается установить SSH-соединение с хостом.
Давайте посмотрим, что она сообщает, если SSH-сервер вообще не от-
вечает на запросы:

$ ansible web -m ping
web | UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh:
kex_exchange_identification: Connection closed by remote host",
 "unreachable": true
}

Такое поведение может быть обусловлено несколькими причинами:

•	 сервер SSH вообще не запущен;
•	 сервер SSH прослушивает нестандартный порт;
•	 порт, к которому вы пытаетесь подключиться, обслуживается ка-

ким-то другим сервером;
•	 порт может фильтроваться брандмауэром на вашем хосте;
•	 порт может фильтроваться брандмауэром на другом хосте;
•	 настройки контроля доступа TCP Wrappers, проверьте /etc/hosts.

allow и /etc/hosts.deny;
•	 хост работает в гипервизоре с микросегметацией.

Убедившись в системной консоли, что SSH-сервер запущен и работа-
ет на хосте, можно попытаться подключиться удаленно с помощью nc
или даже клиента telnet, чтобы проверить отклик:

$ nc hostname 2222
SSH-2.0-OpenSSH_8.2p1 Ubuntu-4ubuntu0.4

172    Глава 8. Отладка сценариев Ansible

Затем можно попробовать удаленно подключиться с помощью SSH-
клиента, используя флаг вывода подробной информации для отладки:

$ ssh -v user@hostname

Также полезно проверить, какие аргументы Ansible передает SSH-кли-
енту, и воспроизвести действие вручную в командной строке. Если вы-
звать ansible с аргументом -vvv, можно увидеть, как именно Ansible вы-
зывает SSH. Это может пригодиться для отладки.

$ ansible web -vvv -m ping

В примере 8.1 показаны часть вывода этой команды.

Пример 8.1. Пример вывода команды ansible с аргументом -vvv

<127.0.0.1> SSH: EXEC ssh -vvv -4 -o PreferredAuthentications=publickey -o
 ForwardAgent=yes -o StrictHostKeyChecking=no -o Port=2200 -o
 'IdentityFile="/Users/bas/.vagrant.d/insecure_private_key"' -o
 KbdInteractiveAuthentication=no -o
 PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
 PasswordAuthentication=no -o 'User="vagrant"' -o ConnectTimeout=10 127.0.0.1
 '/bin/sh -c '"'"'rm -f -r
 /home/vagrant/.ansible/tmp/ansible-tmp-1633182008.6825979-95820-
 137028099318259/ > /dev/null 2>&1 && sleep 0'"'"''
 <127.0.0.1> (0, b'', b'OpenSSH_8.1p1, LibreSSL 2.7.3\r\ndebug1: Reading
 configuration data /Users/bas/.ssh/config\r\ndebug3: kex names ok:
 [curve25519-sha256,diffie-hellman-group-exchange-sha256]\r\ndebug1: Reading
 configuration data /etc/ssh/ssh_config\r\ndebug1: /etc/ssh/ssh_config line
 20: Applying options for *\r\ndebug1: /etc/ssh/ssh_config line 47: Applying
 options for *\r\ndebug2: resolve_canonicalize: hostname 127.0.0.1 is
 address\r\ndebug1: auto-mux: Trying existing master\r\ndebug2: fd 3 setting
 O_NONBLOCK\r\ndebug2: mux_client_hello_exchange: master version 4\r\ndebug3:
 mux_client_forwards: request forwardings: 0 local, 0 remote\r\ndebug3:
 mux_client_request_session: entering\r\ndebug3: mux_client_request_alive:
 entering\r\ndebug3: mux_client_request_alive: done pid = 95516\r\ndebug3:
 mux_client_request_session: session request sent\r\ndebug3:
 mux_client_read_packet: read header failed: Broken pipe\r\ndebug2: Received
 exit status from master 0\r\n')
 web | SUCCESS => {
 "changed": false,
 "invocation": {
 "module_args": {
 "data": "pong"
 }
 },
 "ping": "pong"
 }

Отладка ошибок с SSH-подключением    173

Иногда при отладке проблем с подключением может даже понадо-
биться использовать флаг -vvvv, чтобы увидеть сообщение об ошибке,
возвращаемое SSH-клиентом. Это равносильно добавлению флага -v в
команду ssh, которую использует Ansible:

$ ansible all -vvvv -m ping

В примере 8.2 показано, какой большой объем отладочной информа-
ции можно получить в этом случае.

Пример 8.2. Пример вывода команды ansible с аргументом -vvvv

<192.168.56.10> ESTABLISH SSH CONNECTION FOR USER: vagrant
<192.168.56.10> SSH: EXEC ssh -vvv -4 -o PreferredAuthentications=publickey
-o ForwardAgent=yes -o StrictHostKeyChecking=no -o
'IdentityFile="/Users/bas/.vagrant.d/insecure_private_key"' -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
PasswordAuthentication=no -o 'User="vagrant"' -o ConnectTimeout=10
192.168.56.10 '/bin/sh -c '"'"'/usr/bin/python3 && sleep 0'"'"''
debug1: Reading configuration data /Users/bas/.ssh/config
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 21: include /etc/ssh/ssh_config.d/* matched
no files
debug1: /etc/ssh/ssh_config line 54: Applying options for *
debug1: Authenticator provider $SSH_SK_PROVIDER did not resolve; disabling
debug1: Connecting to 192.168.56.10 [192.168.56.10] port 22.
debug1: fd 3 clearing O_NONBLOCK
debug1: Connection established.
debug1: identity file /Users/bas/.vagrant.d/insecure_private_key type -1
debug1: Local version string SSH-2.0-OpenSSH_8.6
debug1: Remote protocol version 2.0, remote software version OpenSSH_8.2p1
Ubuntu-4ubuntu0.5
debug1: compat_banner: match: OpenSSH_8.2p1 Ubuntu-4ubuntu0.5 pat OpenSSH*
compat 0x04000000
debug1: Authenticating to 192.168.56.10:22 as \'vagrant\'
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: algorithm: curve25519-sha256
debug1: kex: host key algorithm: ssh-ed25519
debug1: kex: server->client cipher: chacha20-poly1305@openssh.com MAC:
<implicit> compression: none
debug1: kex: client->server cipher: chacha20-poly1305@openssh.com MAC:
<implicit> compression: none
debug1: expecting SSH2_MSG_KEX_ECDH_REPLY
debug1: SSH2_MSG_KEX_ECDH_REPLY received
debug1: Server host key: ssh-ed25519
SHA256:BnlxL1InYlrSLQU10HFYzg6ZZkj1boxRSloEsK3bpxA

174    Глава 8. Отладка сценариев Ansible

debug1: Host \'192.168.56.10\' is known and matches the ED25519 host key.
debug1: Found key in /Users/bas/.ssh/known_hosts:57
debug1: rekey out after 134217728 blocks
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: rekey in after 134217728 blocks
debug1: Will attempt key: /Users/bas/.vagrant.d/insecure_private_key
explicit
debug1: SSH2_MSG_EXT_INFO received
debug1: kex_input_ext_info:
server-sig-algs=<ssh-ed25519,sk-ssh-ed25519@openssh.com,ssh-rsa,rsa-sha2-256
,rsa-sha2-512,ssh-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-
nistp521,sk-ecdsa-sha2-nistp256@openssh.com>
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publickey
debug1: Next authentication method: publickey
debug1: Trying private key: /Users/bas/.vagrant.d/insecure_private_key
debug1: Authentication succeeded (publickey).
Authenticated to 192.168.56.10 ([192.168.56.10]:22).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: filesystem full
debug1: client_input_global_request: rtype hostkeys-00@openssh.com
want_reply 0
debug1: client_input_hostkeys: searching /Users/bas/.ssh/known_hosts for
192.168.56.10 / (none)
debug1: client_input_hostkeys: no new or deprecated keys from server
debug1: Remote: /home/vagrant/.ssh/authorized_keys:1: key options:
agent-forwarding port-forwarding pty user-rc x11-forwarding
debug1: Requesting authentication agent forwarding.
debug1: Sending environment.
debug1: channel 0: setting env LC_TERMINAL_VERSION = "3.4.16"
debug1: channel 0: setting env LC_CTYPE = "UTF-8"
debug1: channel 0: setting env LC_TERMINAL = "iTerm2"
debug1: Sending command: /bin/sh -c \'/usr/bin/python3 && sleep 0\'
debug1: client_input_channel_req: channel 0 rtype exit-status reply 0
debug1: channel 0: free: client-session, nchannels 1
Transferred: sent 117208, received 1664 bytes, in 0.4 seconds
Bytes per second: sent 284246.0, received 4035.4
debug1: Exit status 0
')
web | SUCCESS => {
 "changed": false,
 "invocation": {
 "module_args": {

Типичные проблемы с SSH    175

 "data": "pong"
 }
 },
 "ping": "pong"
}
META: ran handlers
META: ran handlers

Вы должны знать, что "ping": "pong" означает успешное соединение,
даже если ему предшествуют отладочные сообщения.

Типичные проблемы с SSH
Для управления хостами Ansible подключается к ним через SSH не-
редко с правами администратора. Поэтому важно знать о проблемах с
безопасностью, которые поначалу могут озадачить обычных пользова-
телей.

PasswordAuthentication no
Параметр PasswordAuthentication no значительно повышает безопасность

ваших серверов. По умолчанию Ansible предполагает, что подключение
к удаленным машинам производится с использованием ключей SSH.
Иметь пару ключей SSH недостаточно, необходимо также скопировать
открытый ключ на машины, которыми вы собираетесь управлять. Тра-
диционно это делается с помощью команды ssh-copy-id, но когда па-
раметр PasswordAuthentication имеет значение no, администратор должен
использовать учетную запись с открытыми ключами, чтобы скопиро-
вать ваш открытый ключ на серверы, желательно с помощью модуля
authorized_keys:

- name: Install authorized_keys taken from file
 authorized_key:
 user: "{{ the_user }}"
 state: present
 key: "{{ lookup('file',the_pub_key) }}"
 key_options: 'no-port-forwarding,from="93.184.216.34"'
 exclusive: true

Обратите внимание, что открытые ключи ed25519 достаточно корот-
кие, и при необходимости их можно ввести в консоли.

Подключение по SSH с учетными данными
другого пользователя
К разным хостам можно подключаться, используя учетные данные

разных пользователей. По возможности старайтесь ограничивать вход

176    Глава 8. Отладка сценариев Ansible

в систему с учетными данными пользователя root. Если подключаться к
каждой машине нужно с учетными данными конкретного пользовате-
ля, то настройте переменную ansible_user в реестре:

[mezzanine]
web ansible_host=192.168.33.10 ansible_user=webmaster
db ansible_host=192.168.33.11 ansible_user=dba

Обратите внимание, что при необходимости можно указать другого
пользователя в командной строке:

$ ansible-playbook --user vagrant -i inventory/hosts mezzanine.yml

Также можно задать пользователя для каждого хоста в конфигураци-
онном файле SSH. Наконец, в заголовке операции (play) можно задать
переменную remote_user для каждой задачи.

Ошибка проверки ключа хоста
Иногда при попытке подключиться к машине можно получить такое

сообщение об ошибке:

$ ansible -m ping web
web | UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh:
@@@\r\n@ WARNING:
REMOTE HOST IDENTIFICATION HAS CHANGED!
@\r\n@@@\r\nIT IS
POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!\r\nSomeone could be
eavesdropping on you right now (man-in-the-middle attack)!\r\nIt is also
possible that a host key has just been changed.\r\nThe fingerprint for the
ED25519 key sent by the remote host
is\nSHA256:+dX3jRW5eoZ+FzQP9jc6cIALXugh9bftvYvaQig+33c.\r\nPlease contact
your system administrator.\r\nAdd correct host key in
/Users/bas/.ssh/known_hosts to get rid of this message.\r\nOffending ED25519
key in /Users/bas/.ssh/known_hosts:2\r\nED25519 host key for 192.168.56.10
has changed and you have requested strict checking.\r\nHost key verification
failed.",
 "unreachable": true
}

В этом случае не отключайте StrictHostKeyChecking в конфигурации SSH,
а просто удалите старый ключ хоста и добавьте новый:

ssh-keygen -R 192.168.33.10
ssh-keyscan 192.168.33.10 >> ~/.ssh/known_hosts

Интерактивный отладчик сценариев    177

Частные сети
Поскольку по умолчанию Ansible использует клиента OpenSSH, вы

можете использовать хост-бастион: центральную точку в DMZ для до-
ступа к другим хостам в частной сети. В следующем примере все хосты,
находящиеся в домене private.cloud, доступны через хост-бастион, ука-
занный в ProxyJump в файле ~/.ssh/config:

Host bastion
 Hostname 100.123.123.123
 User bas
 PasswordAuthentication no
Host *.private.cloud
 User bas
 CheckHostIP no
 StrictHostKeyChecking no
 ProxyJump bastion

Если бастион настроен с помощью VPN, то вам не нужно ис-
пользовать SSH через интернет. Tailscale (https://tailscale.com/) –
простой в использовании сервер VPN на основе WireGuard
(https://www.wireguard.com/), который пропускает трафик от кли-
ентов через бастион к другим хостам в частной подсети, не
требуя выполнять дополнительные настройки на этих хостах.

Модуль debug
В этой книге мы уже использовали модуль debug несколько раз. Это ана-
лог инструкции print в синтаксисе Ansible. Его можно использовать для
вывода значений переменных и произвольных строк, как показано в
примере 8.3.

Пример 8.3. Модуль debug в действии

- debug: var=myvariable
- debug: msg="The value of myvariable is {{ var }}"

Как уже говорилось в главе 5, можно вывести значения всех перемен-
ных, связанных с текущим хостом, как показано ниже:

- debug: var=hostvars[inventory_hostname]

Интерактивный отладчик сценариев
В Ansible 2.5 была добавлена поддержка интерактивного отладчика.
Включить или отключить отладчик для конкретной операции, роли,
блока или задачи можно с помощью ключевого слова debugger:

https://tailscale.com/
https://www.wireguard.com/

178    Глава 8. Отладка сценариев Ansible

- name: deploy mezzanine on web
 hosts: web
 debugger: always
 ...

Если отладка включена, как в этом примере, то Ansible запустит от-
ладчик, и вы сможете выполнять отдельные шаги в сценарии, вводя c
(continue – продолжить):

PLAY [deploy mezzanine on web] ***
TASK [mezzanine : install apt packages] **
changed: [web]
[web] TASK: mezzanine : install apt packages (debug)> c
TASK [mezzanine : create a logs directory] *************************************
changed: [web]
[web] TASK: mezzanine : create a logs directory (debug)> c

В табл. 8.1 перечислены команды, поддерживаемых отладчиком.

Таблица 8.1. Команды отладчика

Команда Сокраще-
ние

Описание

print p Вывести значение переменой

task.args[key] = value нет Изменить аргументы задачи

task_vars[key] = value нет Изменить переменные задачи (после этой команды
необходимо выполнить команду update_task, которая
описывается ниже)

update_task u Создать задачу заново с обновленными переменными

redo r Повторно запустить задачу

continue c Продолжить выполнение, начиная со следующей задачи

quit q Выйти из отладчика

В табл. 8.2 перечислены переменные, поддерживаемые отладчиком .

Таблица 8.2. Переменные, поддерживаемые отладчиком

Переменная Описание

p task Имя задачи, где возникла ошибка

p task.args Аргументы модуля

p result Результат, который вернула задача, допустившая ошибку

p vars Значения всех известных переменных

p vars[key] Значение одной переменной key

Модуль assert    179

Вот пример сеанса работы с отладчиком:

 TASK [mezzanine : install apt packages **
ok: [web]
[web] TASK: mezzanine : install apt packages (debug)> p task.args
{'_ansible_check_mode': False,
 '_ansible_debug': False,
 '_ansible_diff': False,
 '_ansible_keep_remote_files': False,
 '_ansible_module_name': 'apt',
 '_ansible_no_log': False,
 '_ansible_remote_tmp': '~/.ansible/tmp',
 '_ansible_selinux_special_fs': ['fuse',
 'nfs',
 'vboxsf',
 'ramfs',
 '9p',
 'vfat'],
 '_ansible_shell_executable': '/bin/sh',
 '_ansible_socket': None,
 '_ansible_string_conversion_action': 'warn',
 '_ansible_syslog_facility': 'LOG_USER',
 '_ansible_tmpdir': '/home/vagrant/.ansible/tmp/ansible-tmp-1633193380-7157/',
 '_ansible_verbosity': 0,
 '_ansible_version': '2.11.0',
 'cache_valid_time': 3600,
 'pkg': ['git',
 'libjpeg-dev',
 'memcached',
 'python3-dev',
 'python3-pip',
 'python3-venv',
 'supervisor'],
 'update_cache': True}

Вывод значений переменных – одна из самых полезных возможно-
стей, однако отладчик позволяет также изменять переменные и аргу-
менты задач, потерпевших неудачу. За более подробной информацией
обращайтесь к документации с описанием отладчика Ansible (https://oreil.
ly/IZSCl).

Модуль assert
Модуль assert завершает сценарий с сообщением об ошибке при невы-
полнении заданного условия. Например, сценарий завершится с ошиб-
кой, если не будет найден сетевой интерфейс enp0s3:

https://oreil.ly/IZSCl
https://oreil.ly/IZSCl

180    Глава 8. Отладка сценариев Ansible

- name: Assert that the enp0s3 ethernet interface exists
 assert:
 that: ansible_enp0s3 is defined

Такая проверка тех или иных условий может очень пригодиться при
отладке сценария.

В устаревших сценариях или ролях можно увидеть, что отлад-
чик включается в виде стратегии. Такой способ включения
отладчика может не поддерживаться в более новых версиях
Ansible. При включенной стратегии по умолчанию линейного
выполнения (linear) Ansible останавливает выполнение, пока
активен отладчик, а затем запускает отлаживаемую задачу
после ввода команды redo. Однако с включенной свободной
(free) стратегией Ansible не ждет завершения отлаживаемой
задачи на всех хостах и может поставить в очередь более
поздние задачи на одном хосте, прежде чем задача завер-
шится ошибкой на другом хосте. Пока отладчик активен, она
не ставит в очередь и не выполняет никаких задач, однако
все задачи, поставленные в очередь, остаются в очереди и
запускаются сразу после выхода из отладчика. Узнать больше
о стратегиях можно в документации (https://oreil.ly/bLqah).

К сожалению, движок Jinja2 не поддерживает функцию len из Python.
Вместо нее следует использовать Jinja2-фильтр length:

assert:
 that: "ports|length == 1"

Имейте в виду, что код в выражении assert – это инструкции
Jinja2, а не Python. Например, для проверки длины списка так
соблазнительно использовать такой код:

Недопустимый для Jinja2 код, который не будет работать!
assert:
 that: "len(ports) == 1"

Чтобы проверить статус файла в файловой системе хоста, можно сна-
чала вызвать модуль stat и добавить проверку возвращаемого модулем
значения:

- name: Stat /boot/grub
 stat:
 path: /boot/grub

https://oreil.ly/bLqah

Модуль assert    181

 register: st

- name: Assert that /boot/grub is a directory
 assert:
 that: st.stat.isdir

Модуль stat собирает информацию о файле и возвращает словарь, со-
держащий поле stat со значениями, перечисленными в табл. 8.3.

Таблица 8.3. Возвращаемые значения модуля stat (некоторые платформы могут
добавлять дополнительные поля)

Поле Описание

atime Время последнего доступа к файлу в формате меток времени Unix

attributes Список атрибутов файла

charset Кодировка символов в файле

checksum Значение хеша файла

ctime Время создания в формате меток времени Unix

dev Числовой идентификатор устройства, где находится данный индексный узел

executable True, если текущий пользователь имеет разрешение на выполнение файла

exists True, если путь существует

gid Числовой идентификатор группы-владельца

gr_name Имя группы-владельца

inode Номер индексного узла

isblk True, если файл – специальный файл блочного устройства

ischr True, если файл – специальный файл символьного устройства

isdir True, если файл – каталог

isfifo True, если файл – именованный канал

isgid True, если идентификатор группы текущего пользователя совпадает с иден-
тификатором группы-владельца

islnk True, если файл – символическая ссылка

isreg True, если файл – обычный файл

issock True, если файл – сокет домена Unix

isuid True, если идентификатор текущего пользователя совпадает с идентифика-
тором владельца

lnk_source Цель символической ссылки в удаленной файловой системе в нормализо-
ванном виде

182    Глава 8. Отладка сценариев Ansible

Поле Описание

lnk_target Цель символической ссылки

mimetype Тип файла

mode Режим доступа к файлу в виде строки (например, «1177»)

mtime Время последнего изменения в формате меток времени Unix

nlink Количество жестких ссылок на файл

pw_name Имя пользователя владельца файла

readable True, если дано разрешение на чтение для текущего пользователя

rgrp True, если дано разрешение на чтение для группы

roth True, если дано разрешение на чтение для остальных

rusr True, если дано разрешение на чтение для пользователя-владельца

size Размер файла в байтах, если это обычный файл; объем данных для некоторых
специальных файлов

uid Числовой идентификатор пользователя владельца

wgrp True, если дано разрешение на запись для группы

woth True, если дано разрешение на запись для остальных

writeable True, если дано разрешение на чтение для текущего пользователя

wusr True, если дано разрешение на запись для пользователя-владельца

xgrp True, если дано разрешение на выполнение для группы

xoth True, если дано разрешение на выполнение для остальных

xusr True, если дано разрешение на выполнение для пользователя

Проверка сценария перед запуском
Команда ansible-playbook поддерживает несколько флагов, позволяющих
провести проверку сценария перед запуском. При использовании этих
флагов сценарий не запускается.

Проверка синтаксиса
Как показано в примере 8.4, флаг --syntax-check включает проверку до-

пустимости синтаксиса сценария.

Пример 8.4. Проверка синтаксиса

$ ansible-playbook --syntax-check playbook.yml

Проверка сценария перед запуском    183

Список хостов
Как показано в примере 8.5, флаг --list-hosts выводит список хостов,

на которых будет выполняться сценарий.

Пример 8.5. Список хостов

$ ansible-playbook --list-hosts playbook.yml

Иногда можно получить раздражающее предупреждение:

[WARNING]: provided hosts list is empty, only localhost
is available. Note that the implicit localhost does not
match 'all'
[WARNING]: Could not match supplied host pattern,
ignoring: db
[WARNING]: Could not match supplied host pattern,
ignoring: web

В реестре явно должен быть указан хотя бы один хост, ина-
че Ansible вернет это предупреждение, даже если сценарий
выполняется только на локальном хосте. При пустом реестре
(например, если используется сценарий динамической ин-
вентаризации и в данный момент ни один хост не запущен)
можно предотвратить появление этого сообщения, добавив
в реестр группы:

ansible-playbook --list-hosts -i web,db playbook.yml

Список задач
Как показано в примере 8.6, флаг --list-tasks выводит список задач,

которые запускает сценарий.

Пример 8.6. Список задач

$ ansible-playbook --list-tasks playbook.yml

Мы уже использовали этот флаг в примере 7.1 для вывода списка задач
в нашем первом сценарии, развертывающем приложение Mezzanine.
Напомню еще раз, что ни с одним из флагов, упоминаемых в этом раз-
деле, команда ansible-playbook не запускает сценарий, а только проверяет
его.

Режим проверки
Флаги -C и --check запускают Ansible в режиме проверки (также извест-

ном как dry run – сухой прогон), который показывает, изменила бы каж

184    Глава 8. Отладка сценариев Ansible

дая задача состояние хоста, но при этом никакие изменения фактичес
ки не выполняются.

$ ansible-playbook -C playbook.yml
$ ansible-playbook --check playbook.yml

Одна из сложностей использования режима проверки – правильная
оценка успешности выполнения последующих частей сценария, зави-
сящих от выполнения предыдущих. Если запустить в режиме проверки
сценарий из примера 7.28, то он вернет признак ошибки, как показано
в примере 8.7, потому что данная задача зависит от предыдущей, уста-
навливающей программу NGINX на хост. Еще одна сложность: модули,
используемые в сценарии, должны поддерживать режим проверки,
иначе проверка будет терпеть неудачу.

Пример 8.7. Ошибка при выполнении корректного сценария в режиме проверки

TASK [nginx : create ssl certificates] ***
fatal: [web]: FAILED! => {
 "changed": false
}
MSG:
Unable to change directory before execution: [Errno 2] No such file or directory:
b'/etc/nginx/conf'

Подробнее о поддержке режима проверки модулями рассказывается
в главе 19.

Вывод изменений в файлах
Флаги -D и -diff выводят информацию о любых изменениях, сделан-

ных в файлах на удаленной машине. Этот флаг удобно использовать
вместе с --check, чтобы увидеть, как Ansible изменит файл в нормальном
режиме.

$ ansible-playbook -D --check playbook.yml
$ ansible-playbook --diff --check playbook.yml

Если Ansible внесет изменения в какой-то файл (например, используя
такие модули, как copy, file, template и lineinfile), то она покажет их в фор-
мате .diff:

TASK [mezzanine : create a logs directory] *************************************
--- before
+++ after
@@ -1,4 +1,4 @@
 {
 "path": "/home/vagrant/logs",

Проверка сценария перед запуском    185

- "state": "absent"
+ "state": "directory"
 }

 changed: [web]

Теги
Ansible позволяет добавлять теги к задачам, ролям и операциям.

Например, следующая операция отмечена тегами mezzanine и nginx. (Бас
предпочитает использовать теги на уровне ролей из-за сложности их
поддержки на уровне задач.)

- name: deploy postgres on db
 hosts: db
 debugger: on_failed
 vars_files:
 - secrets.yml
 roles:
 - role: database
 tags: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"

- name: deploy mezzanine on web
 hosts: web
 debugger: always
 vars_files:
 - secrets.yml

 roles:
 - role: mezzanine
 tags: mezzanine
 database_host: "{{ hostvars.db.ansible_enp0s8.ipv4.address }}"
 - role: nginx
 tags: nginx

Добавив в команду флаг -t имена_тегов или --tags имена_тегов, можно по-
требовать от Ansible выполнить только операции и задачи, отмеченные
определенными тегами, а добавив флаг --skip-tags – пропустить опера-
ции и задачи. Взгляните на пример 8.8.

Пример 8.8. Использование тегов

$ ansible-playbook -tnxinx playbook.yml
$ ansible-playbook --tags=xinx,database playbook.yml
$ ansible-playbook --skip-tags=mezzanine playbook.yml

186    Глава 8. Отладка сценариев Ansible

Ограничение обслуживаемых хостов
Чтобы ограничить список хостов, на которых будет выполняться сце-

нарий, можно использовать флаг --limit. С его помощью, например,
можно организовать канареечное тестирование (https://oreil.ly/seUXz) с при-
менением подробного журналирования. Флаг --limit ограничивает круг
хостов, на которых будет выполняться сценарий в соответствии с ука-
занным выражением. В простейшем случае это может быть имя одного
хоста:

$ ansible-playbook -vv --limit db playbook.yml

Ограничения и теги – очень удобные инструменты отладки, но имей-
те в виду, что теги сложно поддерживать в больших масштабах. Ограни-
чения также очень полезны для тестирования и развертывания отдель-
ных частей инфраструктуры.

Заключение
В Ansible есть множество средств, помогающих в отладке. При правиль-
ном использовании они могут помочь сократить время, необходимое
для тестирования каждого изменения. Они также пригодятся вам при
изучении сценариев, представленных в следующих главах.

https://oreil.ly/seUXz

Глава 9
Роли: масштабирование

сценариев

Роли в Ansible – это основной механизм деления сценария на отдельные
файлы. Они упрощают написание сложных сценариев и их повторное
использование. Думайте о роли как о чем-то, применяемом к одному
или нескольким хостам. Например, хостам, которые будут выступать
в роли серверов баз данных, можно присвоить роль database. Одной из
особенностей Ansible, вызывающих у меня восхищение, является вер-
тикальное масштабирование – вверх и вниз. Масштабирование вниз
помогает упростить разработку отдельных задач, а масштабирование
вверх – деление сложных задач на небольшие части. Роли обеспечи-
вают возможность структурирования и не содержат никаких данных,
специфичных для конкретной машины, поэтому ими можно делиться с
коллегами, реализующими управление своими серверами и комбини-
рующими роли в своих собственных сценариях.

Здесь я имею в виду не количество хостов, а сложность автоматизиру-
емых задач. В этой главе вы научитесь описывать и использовать роли!

Базовая структура роли
Роль в Ansible имеет имя, например database. Файлы, связанные с ро-
лью database, хранятся в каталоге roles/database, содержащем следующие
файлы и подкаталоги:

defaults/
 main.yml
files/
 pg_hba.conf
handlers/
 main.yml
meta/
 main.yml
tasks/

188    Глава 9. Роли: масштабирование сценариев

 main.yml
templates/
 postgres.conf.j2
vars/
 main.yml

tasks
	 В каталоге tasks находится файл main.yml, служащий точкой входа

для действий, выполняемых ролью.
files
	 Содержит файлы и сценарии для выгрузки на хосты.
templates
	 Содержит файлы шаблонов Jinja2 для выгрузки на хосты.
handlers
	 В каталоге handlers имеется файл main.yml, описывающий дей-

ствия, которые должны выполняться при получении уведомле-
ний об изменениях.

vars
	 Переменные, которые обычно не должны переопределяться.
defaults
	 Переменные по умолчанию, которые можно переопределить.
meta
	 Информация о роли.

Ни один конкретный файл не является обязательным; например, если
роль не имеет обработчиков, то нет необходимости создавать пустой
файл handlers/main.yml и сохранять его в репозитории.

Где Ansible будет искать мои роли?
Ansible ищет роли в подкаталоге roles, находящемся в папке со сценарием.
Системные роли можно поместить в каталог /etc/ansible/roles. Местоположе-
ние системных ролей можно изменить, переопределив параметр roles_path в
секции defaults файла ansible.cfg, как показано в примере 9.1. Такая органи-
зация помогает отделить роли, определяемые в проекте, от системных ролей.

Пример 9.1. ansible.cfg: изменение пути к каталогу с системными
ролями

[defaults]
roles_path = galaxy_roles:roles

То же самое можно сделать, изменив переменную окружения ANSIBLE_ROLES_PATH.

Пример: развертывание Mezzanine с использованием ролей    189

Пример: развертывание Mezzanine
с использованием ролей
Возьмем за основу наш сценарий развертывания Mezzanine и изменим
его, реализовав роли. Можно было бы создать единственную роль с име-
нем mezzanine, но мы пойдем дальше и дополнительно выделим развер-
тывание базы данных Postgres и веб-сервера NGINX в отдельные роли
с именами database и nginx соответственно. Это упростит развертывание
базы данных на хосте, отличном от хоста для приложения Mezzanine, и
отделит задачи, связанные с развертыванием веб-сервера.

Использование ролей в сценариях
Прежде чем погрузиться в детали определения ролей, посмотрим,

как назначать роли хостам в сценариях. В примере 9.2 представлен наш
сценарий для развертывания Mezzanine на единственном хосте после
добавления ролей database, nginx и mezzanine.

Пример 9.2. mezzanine-single-host.yml

- name: Deploy mezzanine on vagrant
 hosts: web

 vars_files:
 - secrets.yml

 roles:
 - role: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"
 - role: mezzanine
 database_host: '127.0.0.1'
 - role: nginx
...

Чтобы задействовать роли, в сценарии должна иметься секция roles со
списком ролей. В нашем примере список содержит три роли – database,
nginx и mezzanine.

Обратите внимание, как можно передавать переменные при вызове
ролей. В нашем примере мы передаем роли database переменные data-
base_name и database_user. Если эти переменные уже определены для роли
(в vars/main.yml или defaults/main.yml), их значения будут переопределе-
ны значениями, указанными здесь.

Если ролям не передаются никакие переменные, то можно опреде-
лить только имена ролей, как это сделано с ролью nginx в примере 9.2.

190    Глава 9. Роли: масштабирование сценариев

После определения ролей database, nginx и mezzanine писать сценарий для
развертывания веб-приложения и базы данных на нескольких хостах
становится намного проще. В примере 9.3 показан сценарий разверты-
вания базы данных на хосте db и веб-службы на хосте web.

Пример 9.3. mezzanine-across-hosts.yml

- name: Deploy postgres on db
 hosts: db

 vars_files:
 - secrets.yml

 roles:
 - role: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"

- name: Deploy mezzanine on web
 hosts: web

 vars_files:
 - secrets.yml

 roles:
 - role: mezzanine
 database_host: "{{ hostvars.db.ansible_enp0s8.ipv4.address }}"
 - role: nginx
...

Обратите внимание, что этот сценарий содержит две отдельные
операции (play): «Deploy postgres on db» и «Deploy mezzanine on web».
Каждая операция может применяться к целой группе хостов, но у нас
только одна машина в каждой группе: сервер db и сервер web.

Предварительные и заключительные задачи
Иногда до или после запуска ролей требуется выполнить некоторые

задачи. Допустим, необходимо обновить кеш диспетчера apt перед раз-
вертыванием Mezzanine, а после развертывания отправить уведомле-
ние в канал Slack.

Ansible выполняет сценарии в следующем порядке:

•	 до вызова любых ролей выполняются задачи в секции pre_tasks;
•	 затем выполняются роли в секции roles;
•	 и наконец, после вызова ролей выполняются задачи в секции post_

tasks.

Пример: развертывание Mezzanine с использованием ролей    191

В примере 9.4 представлен сценарий развертывания Mezzanine с сек-
циями pre_tasks, roles и post_tasks.

Пример 9.4. Списки задач для выполнения до и после вызова ролей

- name: Deploy mezzanine on web
 hosts: web
 vars_files:
 - secrets.yml

 pre_tasks:
 - name: Update the apt cache
 apt:
 update_cache: yes

 roles:
 - role: mezzanine
 database_host: "{{ hostvars.db.ansible_enp0s8.ipv4.address }}"
 - role: nginx

 post_tasks:
 - name: Notify Slack that the servers have been updated
 delegate_to: localhost
 slack:
 domain: acme.slack.com
 token: "{{ slack_token }}"
 msg: "web server {{ inventory_hostname }} configured."
...

Но хватит об использовании ролей; поговорим лучше об их написа-
нии.

Роль database для развертывания базы данных
Задача роли database – установить Postgres и создать базу данных и

пользователя.
Все аспекты роли database определяются в следующих файлах:

•	 roles/database/defaults/main.yml;
•	 roles/database/files/pg_hba.conf;
•	 roles/database/handlers/main.yml;
•	 roles/database/meta/main.yml;
•	 roles/database/tasks/main.yml;
•	 roles/database/templates/postgresql.conf.j2;
•	 roles/database/vars/main.yml.

Эта роль включает два особых конфигурационных файла Postgres.

192    Глава 9. Роли: масштабирование сценариев

postgresql.conf.j2
	 Изменяет заданный по умолчанию параметр listen_addresses, что-

бы сервер Postgres принимал соединения на любом сетевом ин-
терфейсе. По умолчанию Postgres принимает соединения только
от localhost, что нам не подходит, так как наша база данных раз-
вертывается на отдельном хосте.

pg_hba.conf
	 Настраивает режим аутентификации в Postgres по сети с исполь-

зованием имени пользователя и пароля.

Я не привожу здесь этих файлов, поскольку они достаточно
большие. Вы найдете их в примерах кода в каталоге ch07 в
репозитории GitHub (https://oreil.ly/PddOX).

В примере 9.5 показаны задачи, вовлеченные в процесс развертывания
Postgres.

Пример 9.5. roles/database/tasks/main.yml

- name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg: "{{ postgres_packages }}"

- name: Copy configuration file
 become: true
 template:
 src: postgresql.conf.j2
 dest: /etc/postgresql/12/main/postgresql.conf
 owner: postgres
 group: postgres
 mode: '0644'
 notify: Restart postgres

- name: Copy client authentication configuration file
 become: true
 copy:
 src: pg_hba.conf
 dest: /etc/postgresql/12/main/pg_hba.conf
 owner: postgres
 group: postgres

https://oreil.ly/PddOX

Пример: развертывание Mezzanine с использованием ролей    193

 mode: '0640'
 notify: Restart postgres
- name: Create project locale
 become: true
 locale_gen:
 name: "{{ locale }}"

- name: Create a DB user
 become: true
 become_user: postgres
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"

- name: Create the database
 become: true
 become_user: postgres
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0
...

В примере 9.6 показано содержимое файла с определениями обра-
ботчиков, вызываемых при получении уведомлений об изменениях.

Пример 9.6. roles/database/handlers/main.yml

- name: Restart postgres
 become: true
 service:
 name: postgresql
 state: restarted
...

Единственная переменная по умолчанию, которую мы определим, за-
дает порт сервера базы данных. Она используется в шаблоне postgresql.
conf.j2.

В примере 9.7 можно видеть список пакетов для установки. Он вклю-
чает саму базу данных, клиентские библиотеки C и Python, а также acl.

Пример 9.7. roles/database/defaults/main.yml

postgres_packages:

194    Глава 9. Роли: масштабирование сценариев

 - acl # для become_user: postgres
 - libpq-dev
 - postgresql
 - python3-psycopg2
...

Пакет acl необходим, когда для подключения и в become_user
используются непривилегированные учетные записи. Модуль
file сохраняет файлы на хосте с разрешениями пользователя,
установившего соединение, но они должны быть доступны
для чтения пользователю become_user. Чтобы разрешить доступ
к файлам пользователю become_user, Ansible будет использо-
вать команду setfacl из пакета acl.

Обратите внимание, что в списке задач имеются ссылки на перемен-
ные, которые не определены в роли:

•	 database_name;
•	 database_user;
•	 db_pass;
•	 locale.

Переменные database_name и database_user передаются в вызов роли
в примерах 9.2 и 9.3. Переменная db_pass будет определена в файле
secrets.yml, который включен в секцию vars_files. Переменная locale, ве-
роятно, будет иметь одно и то же значение для всех хостов и может
использоваться разными ролями или сценариями, поэтому мы опре-
делим ее в файле group_vars/all.

Зачем два разных способа определения
переменных в ролях?

Когда в Ansible впервые появилась поддержка ролей, переменные для них
можно было определить только в vars/main.yml. Переменные, объявленные
в этом файле, имели более высокий приоритет, чем переменные в секции
vars сценария. То есть их можно было переопределить, только передав в
вызов роли в виде аргумента.
Позднее в Ansible появилось понятие переменных по умолчанию для ро-
лей, определяемых в defaults/main.yml. Переменные этого типа определя-
ются в ролях и имеют низкий приоритет – их можно переопределить, если
объявить эти же переменные с другими значениями в сценарии.
Если вы считаете, что значение переменной в роли может понадобиться
изменить, объявите ее как переменную по умолчанию. Если переменные не
должны изменяться, объявляйте их как обычные переменные.

Пример: развертывание Mezzanine с использованием ролей    195

Роль mezzanine для развертывания Mezzanine
Задача роли mezzanine – установка Mezzanine. Сюда входят установка

NGINX в качестве обратного прокси и Supervisor в качестве монитора
процессов.

Ниже перечислены файлы, реализующие роль:

•	 roles/mezzanine/files/setadmin.py;
•	 roles/mezzanine/files/setsite.py;
•	 roles/mezzanine/handlers/main.yml;
•	 roles/mezzanine/tasks/django.yml;
•	 roles/mezzanine/tasks/main.yml;
•	 roles/mezzanine/templates/gunicorn.conf.pyj2;
•	 roles/mezzanine/templates/local_settings.py.filters.j2;
•	 roles/mezzanine/templates/local_settings.py.j2;
•	 roles/mezzanine/templates/supervisor.conf.j2;
•	 roles/mezzanine/vars/main.yml.

В примере 9.8 показаны переменные для данной роли. Обратите
внимание, что мы изменили их имена так, чтобы они начинались с
mezzanine. Это хорошее правило выбора имен переменных для ролей,
поскольку в Ansible нет отдельного пространства имен для ролей. Это
значит, что переменные, объявленные в других ролях или где-то еще в
сценарии, будут доступны повсеместно, что может приводить к нежела-
тельным последствиям, если случайно использовать одно и то же имя
переменной в двух разных ролях.

Пример 9.8. roles/mezzanine/vars/main.yml

файл с переменными для mezzanine
mezzanine_user: "{{ ansible_user }}"
mezzanine_venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
mezzanine_venv_path: "{{ mezzanine_venv_home }}/{{ mezzanine_proj_name }}"
mezzanine_repo_url: git@github.com:ansiblebook/mezzanine_example.git
mezzanine_settings_path: "{{ mezzanine_proj_path }}/{{ mezzanine_proj_name }}"
mezzanine_reqs_path: '~/requirements.txt'
mezzanine_python: "{{ mezzanine_venv_path }}/bin/python"
mezzanine_manage: "{{ mezzanine_python }} {{ mezzanine_proj_path }}/manage.py"
mezzanine_gunicorn_procname: gunicorn_mezzanine
...

Поскольку список задач довольно длинный, мы решили разбить его
на несколько файлов. В примере 9.9 показана задача верхнего уровня
для роли mezzanine. Она устанавливает пакеты apt, а затем использует
операторы include для вызова задач из двух других файлов, находящихся
в том же каталоге и показанных в примерах 9.10 и 9.11.

196    Глава 9. Роли: масштабирование сценариев

Пример 9.9. roles/mezzanine/tasks/main.yml

- name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg:
 - git
 - libjpeg-dev
 - memcached
 - python3-dev
 - python3-pip
 - python3-venv
 - supervisor

- include_tasks: setup.yml
- include_tasks: django.yml
...

Пример 9.10. roles/mezzanine/tasks/setup.yml

- name: Create a logs directory
 file:
 path: "{{ ansible_env.HOME }}/logs"
 state: directory
 mode: '0755'

- name: Check out the repository on the host
 git:
 repo: "{{ mezzanine_repo_url }}"
 dest: "{{ mezzanine_proj_path }}"
 version: master
 accept_hostkey: true
 update: false
 tags:
 - repo

- name: Create python3 virtualenv
 pip:
 name:
 - pip
 - wheel
 - setuptools
 state: latest

Пример: развертывание Mezzanine с использованием ролей    197

 virtualenv: "{{ mezzanine_venv_path }}"
 virtualenv_command: /usr/bin/python3 -m venv
 tags:
 - skip_ansible_lint

- name: Copy requirements.txt to home directory
 copy:
 src: requirements.txt
 dest: "{{ mezzanine_reqs_path }}"
 mode: '0644'

- name: Install packages listed in requirements.txt
 pip:
 virtualenv: "{{ mezzanine_venv_path }}"
 requirements: "{{ mezzanine_reqs_path }}"

Пример 9.11. roles/mezzanine/tasks/django.yml

- name: Generate the settings file
 template:
 src: templates/local_settings.py.j2
 dest: "{{ mezzanine_settings_path }}/local_settings.py"
 mode: '0750'

- name: Apply migrations to database, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ mezzanine_proj_path }}"
 virtualenv: "{{ mezzanine_venv_path }}"
 with_items:
 - migrate
 - collectstatic

- name: Set the site id
 script: setsite.py
 environment:
 PATH: "{{ mezzanine_venv_path }}/bin"
 PROJECT_DIR: "{{ mezzanine_proj_path }}"
 PROJECT_APP: "{{ mezzanine_proj_app }}"
 DJANGO_SETTINGS_MODULE: "{{ mezzanine_proj_app }}.settings"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

- name: Set the admin password
 script: setadmin.py
 environment:
 PATH: "{{ mezzanine_venv_path }}/bin"
 PROJECT_DIR: "{{ mezzanine_proj_path }}"

198    Глава 9. Роли: масштабирование сценариев

 PROJECT_APP: "{{ mezzanine_proj_app }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

- name: Set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ mezzanine_proj_path }}/gunicorn.conf.py"
 mode: '0750'

- name: Set the supervisor config file
 become: true
 template:
 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf
 mode: '0640'
 notify: Restart supervisor

- name: Install poll twitter cron job
 cron:
 name: "poll twitter"
 minute: "*/5"
 user: "{{ mezzanine_user }}"
 job: "{{ mezzanine_manage }} poll_twitter"
...

Есть существенная разница между задачами, объявленными в роли,
и задачами, объявленными в сценарии как обычно. Она касается ис-
пользования модулей copy, script и template. Когда модуль copy или script
вызывается в задаче для роли, Ansible будет искать файлы в каталогах
в том порядке, в каком они перечислены ниже, и использовать первый
найденный. Пути к этим каталогам откладываются относительно ката-
лога со сценарием верхнего уровня.

•	 ./roles/role_name/files/;
•	 ./roles/role_name/;
•	 ./roles/role_name/tasks/files/;
•	 ./roles/role_name/tasks/;
•	 ./files/;
•	 ./.

Аналогично, когда модуль template вызывается в задаче для роли, Ansible
сначала проверит каталог <имя_роли>/templates, а затем playbooks/
templates (наряду с менее очевидными каталогами). Таким спосо-
бом роли определяют файлы по умолчанию в своих каталогах files/ и
templates/, но вы не можете просто заменить их файлами в подкаталогах
files/ и templates/ проекта.

Создание файлов и каталогов ролей с помощью ansible-galaxy    199

Это значит, что задача, которая раньше была определена в сценарии
так:

 - name: Copy requirements.txt to home directory
 copy:
 src: files/requirements.txt
 dest: "{{ mezzanine_reqs_path }}"
 mode: '0644'

теперь, когда она вызывается в роли, должна выглядеть так (обратите
внимание на изменившийся параметр src):

 - name: Copy requirements.txt to home directory
 copy:
 src: "{{ files_src_path | default() }}requirements.txt"
 dest: "{{ mezzanine_reqs_path }}"
 mode: '0644'

files_src_path – это переменная, хранящая путь, который можно пере
определить. Эта переменная может также хранить пустое значение для
реализации поведения по умолчанию. Такой вариант использования
переменных с путями к файлам и шаблонам в ролях предложил (https://
oreil.ly/WgI9l) Рамон де ла Фуэнте (Ramon de la Fuente).

В примере 9.12 показан файл обработчиков. Эти обработчики вызы-
ваются, когда поступают уведомления об изменениях.

Пример 9.12. roles/mezzanine/handlers/main.yml

- name: Restart supervisor
 become: true
 supervisorctl:
 name: gunicorn_mezzanine
 state: restarted
...

Мы не будем приводить здесь файлы шаблонов, поскольку они оста-
лись теми же, что и в предыдущей главе, хотя имена некоторых пере-
менных изменились. За дополнительной информацией обращайтесь к
примерам кода, прилагаемым к книге (https://oreil.ly/PddOX).

Создание файлов и каталогов ролей с помощью
ansible-galaxy
В состав Ansible входит еще один инструмент командной строки, о ко-
тором мы пока не говорили. Это ansible-galaxy. Его основное назначе-
ние – загрузка ролей, которыми поделились члены сообщества Ansible
(https://galaxy.ansible.com/), подробнее об этом чуть позже. Но с его помощью

https://oreil.ly/WgI9l
https://oreil.ly/WgI9l
https://oreil.ly/PddOX
https://galaxy.ansible.com/

200    Глава 9. Роли: масштабирование сценариев

также можно сгенерировать начальный набор файлов и каталогов для
роли:

$ ansible-galaxy init --init-path playbooks/roles web

Параметр --init-path сообщает местоположение каталога roles. Если
его опустить, то ansible-galaxy создаст файлы в текущем каталоге. Эта
команда создаст следующие файлы и каталоги:

playbooks
|___ roles
 |___ web
 |—— README.md
 |—— defaults
 | |___ main.yml
 |—— files
 |—— handlers
 | |___ main.yml
 |—— meta
 | |___ main.yml
 |—— tasks
 | |___ main.yml
 |—— templates
 |—— tests
 | |___ inventory
 | |___ test.yml
 |___ vars
 |___ main.yml

Зависимые роли
Представьте, что у нас есть две роли – web и database, – и обе требуют уста-
новки сервера NTP1. Мы могли бы описать установку NTP-сервера в обе-
их ролях, но это привело бы к дублированию кода. Мы могли бы опре-
делить отдельную роль ntp, но тогда нам пришлось бы помнить, что,
запуская роли web и database, мы также должны запустить роль ntp. Такой
подход избавил бы от дублирования кода, но он чреват ошибками, по-
скольку можно забыть вызвать роль ntp. В действительности нам нужно,
чтобы роль ntp всегда присваивалась хостам, которым присваиваются
роли web и database.

Ansible поддерживает возможность определения зависимостей меж-
ду ролями для подобных случаев. Определяя роль, можно указать, что
она зависит от одной или нескольких других ролей, а Ansible позаботит-
ся о том, чтобы зависимые роли выполнялись первыми.

1	 NTP (Network Time Protocol) – протокол сетевого времени, используется для синхронизации
времени.

Ansible Galaxy    201

Продолжая наш пример, допустим, что мы создали роль ntp, настраи-
вающую хост для синхронизации часов с сервером NTP. Ansible позво-
ляет передавать параметры зависимым ролям, поэтому представим,
что мы передали адрес сервера NTP этой роли как параметр.

Укажем, что роль web зависит от роли ntp, создав файл roles/web/meta/
main.yml и добавив в него роль ntp с параметром, как показано в приме-
ре 9.13.

Пример 9.13. roles/web/meta/main.yml

dependencies:
 - { role: ntp, ntp_server=ntp.ubuntu.com }

Таким способом можно определить несколько зависимых ролей. На-
пример, если бы у нас была роль django для установки веб-сервера Django
и мы хотели бы определить роли nginx и memcached как зависимости, тогда
файл метаданных роли выглядел бы, как показано в примере 9.14.

Пример 9.14. roles/django/meta/main.yml

dependencies:
 - { role: web }
 - { role: memcached }

За более подробной информацией о зависимостях между ролями в
Ansible обращайтесь к официальной документации (https://oreil.ly/3nJ4K).

Ansible Galaxy
Если вам понадобится установить на ваши хосты программное обеспе-
чение с открытым исходным кодом, то вполне вероятно, что кто-то уже
написал роль Ansible для этого. Хотя разработка сценариев для развер-
тывания программного обеспечения не особенно сложна, некоторые
системы действительно требуют сложных процедур развертывания.

Если вы захотите использовать роль, написанную кем-то другим, или
просто посмотреть, как кто-то другой решил похожую задачу, Ansible
Galaxy поможет вам в этом. Ansible Galaxy – это хранилище ролей
Ansible с открытым исходным кодом, пополняемое членами сообще-
ства Ansible. Сами роли хранятся на GitHub. https://galaxy.ansible.com – цент
ральный веб-сайт для контента Ansible, а ansible-galaxy – инструмент ин-
терфейса командной строки.

Веб-интерфейс
Исследовать доступные роли можно на сайте Ansible Galaxy (http://

galaxy.ansible.com). Galaxy поддерживает обычный текстовый поиск, а также
фильтрацию по категории или разработчику.

https://oreil.ly/3nJ4K
https://galaxy.ansible.com
http://galaxy.ansible.com
http://galaxy.ansible.com

202    Глава 9. Роли: масштабирование сценариев

Интерфейс командной строки
Инструмент командной строки ansible-galaxy позволяет загружать

роли с сайта Ansible Galaxy или создавать стандартную структуру ката-
логов для ansible-role.

Установка роли
Допустим, вы решили установить роль ntp, написанную пользовате-

лем GitHub с именем oefenweb (Миша тер Смиттен [Mischa ter Smitten],
один из самых активных авторов Ansible Galaxy). Эта роль настраивает
хост для синхронизации часов с сервером NTP.

Установите роль командой ansible-galaxy install.

$ ansible-galaxy install oefenweb.ntp

Программа ansible-galaxy по умолчанию устанавливает роли в первый
каталог из перечисленных в roles_path (см. врезку «Где Ansible будет ис-
кать мои роли?» в начале главы), но вы можете изменить каталог уста-
новки, добавив параметр -p (при этом все необходимые подкаталоги
будут созданы автоматически, если потребуется).

Результат должен выглядеть так:

Starting galaxy role install process
- downloading role 'ntp', owned by oefenweb
- downloading role from https://github.com/Oefenweb/ansible-ntp/archive/v1.1.33.
tar.gz
- extracting oefenweb.ntp to ./galaxy_roles/oefenweb.ntp
- oefenweb.ntp (v1.1.33) was installed successfully

Инструмент ansible-galaxy установит файлы роли в galaxy_roles/
oefenweb.ntp.

Ansible поместит некоторые метаданные об установленной роли в
файл ./galaxy_roles/oefenweb.ntp/meta/.galaxy_install_info. На машине Баса
этот файл содержит:

install_date: Tue Jul 20 12:13:44 2021
version: v1.1.33

Роль oefenweb.ntp имеет конкретный номер версии, поэтому он
указан явно. Некоторые роли не имеют номера версии, по-
этому для них вместо номера версии указывается имя ветки
по умолчанию в GitHub, например main.

Вывод списка установленных ролей
Получить список установленных ролей можно командой:

$ ansible-galaxy list

Ansible Galaxy    203

Она выведет роли в порядке сортировки ключей galaxy_info в meta/
main.yml, как показано ниже:

/Users/bas/ansiblebook/ch07/playbooks/galaxy_roles
- oefenweb.ntp, v1.1.33
/Users/bas/ansiblebook/ch07/playbooks/roles
- database, (unknown version)
- web, (unknown version)

Удаление роли
Удалить роль можно командой remove:

$ ansible-galaxy remove oefenweb.ntp

Требования к оформлению ролей на практике
Общепринятой практикой считается перечисление зависимостей в

файле с именем requirements.yml в каталоге roles, расположенном в пап-
ке <каталог_проекта>/roles/requirements.yml. Если этот файл присутст
вует, то ansible-galaxy автоматически установит перечисленные в нем
роли. Такой подход позволяет ссылаться на роли в Galaxy или в других
репозиториях и извлекать их вместе с вашим собственным проектом.
Добавление поддержки Ansible Galaxy устраняет необходимость созда-
ния подмодулей Git для достижения этого результата.

В следующем фрагменте первый параметр src определяет зависи-
мость от роли oefenweb.ntp (если источник роли определен так, то по
умолчанию она будет загружена из Galaxy). Второй параметр src ини-
циирует загрузку роли docker непосредственно из GitHub; эту роль напи
сал Джефф Гирлинг (Jeff Geerling) – известный в сообществе Ansible сво-
ей книгой «Ansible for DevOps, 2nd ed.» [LeanPub] и многими ролями в
Galaxy. Третий загружает роль из локального репозитория Git. Параметр
name в файле requirements.yml можно использовать для переименования
ролей после загрузки.

- src: oefenweb.ntp

- src: https://github.com/geerlingguy/ansible-role-docker.git
 scm: git
 version: '4.0.0'
 name: geerlingguy.docker

- src: https://tools.example.intra/bitbucket/scm/ansible/install-nginx.git
 scm: git
 version: master

204    Глава 9. Роли: масштабирование сценариев

 name: web
...

Как поделиться своей ролью
Чтобы узнать, как поделиться своей ролью с другими членами сооб-

щества, обращайтесь к разделу «Contributing Content» (https://oreil.ly/lfLle)
на сайте Ansible Galaxy. Поскольку роли располагаются в репозитории
GitHub, вам потребуется создать свою учетную запись.

Заключение
Теперь вы знаете, как использовать роли, создавать собственные роли и
загружать роли, написанные другими. Роли – мощный инструмент ор-
ганизации сценариев. Мы пользуемся ими постоянно и настоятельно
рекомендуем вам поступать так же. Если вы обнаружите, что конкрет-
ный ресурс, с которым вы работаете, не имеет роли в Galaxy, то напиши-
те эту роль и поделитесь ею с другими!

https://oreil.ly/lfLle

Глава 10
Сложные сценарии

В предыдущей главе мы рассмотрели полноценный сценарий Ansible
для развертывания Mezzanine CMS. В этом примере были использова-
ны самые разные возможности Ansible, но далеко не все. Данная глава
рассказывает о дополнительных возможностях, превращаясь в кладезь
не менее полезной информации.

Решение проблем с неидемпотентными командами
В главе 7 мы предпочли отказаться от команды createdb manage.py, пред-
ставленной в примере 10.1, потому что она не является идемпотентной.

Пример 10.1. Вызов команды django manage.py из createdb

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

Мы решили эту проблему запуском нескольких идемпотентных
команд django manage.py, которые в комплексе эквивалентны createdb. Но
как быть, если нет модуля с эквивалентными командами? Решить эту
проблему помогут выражения changed_when и failed_when, используемые в
Ansible для обнаружения изменения состояния или ошибок.

Сначала нужно разобраться, что выводит команда в первый раз, а что
во второй.

Как мы уже делали это в главе 5, добавим выражение register для со-
хранения в переменной вывода задачи, завершившейся с ошибкой, и
выражение failed_when: false, чтобы исключить остановку сценария в
случае ошибки. Следом добавим задачу debug, чтобы вывести на экран
содержимое переменной. И наконец, используем выражение fail для
остановки сценария, как показано в примере 10.2.

Пример 10.2. Вывод результата выполнения задачи
- name: Initialize the database
 django_manage:

206    Глава 10. Сложные сценарии

 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 failed_when: false
 register: result

- debug: var=result

- fail:

В примере 10.3 показан вывод сценария после попытки запустить его
второй раз.

Пример 10.3. Вывод сценария в случае, если база данных уже создана

TASK [debug] ***
ok: [web] ==> {
 "result": {
 "changed": false,
 "cmd": "./manage.py createdb --noinput --nodata",
 "failed": false,
 "failed_when_result": false,
 "msg": "\n:stderr: CommandError: Database already created, you probably want
the migrate command\n",
 "path": "/home/vagrant/.virtualenvs/mezzanine_example/bin:/usr/local/sbin:/
usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/
games:/snap/bin",
 "syspath": [
 "/tmp/ansible_django_manage_payload_hb62e1ie/ansible_django_manage_pay
load.zip",
 "/usr/lib/python38.zip",
 "/usr/lib/python3.8",
 "/usr/lib/python3.8/lib-dynload",
 "/usr/local/lib/python3.8/dist-packages",
 "/usr/lib/python3/dist-packages"
]
 }
}

Это происходит при каждом повторном запуске задачи. Чтобы уви-
деть, что происходит при запуске в первый раз, удалите базу данных и
позвольте сценарию воссоздать ее. Самый простой способ сделать это –
запустить специальную задачу Ansible, которая удаляет базу данных:

$ ansible web -b --become-user postgres -m postgresql_db \
 -a "name=mezzanine_example state=absent"

Если теперь запустить сценарий, он выведет строки, показанные в
примере 10.4.

Решение проблем с неидемпотентными командами    207

Пример 10.4. Вывод сценария при первом запуске

TASK [debug] ***
ok: [web] ==> {
 "result": {
 "app_path": "/home/vagrant/mezzanine/mezzanine_example",
 "changed": false,
 "cmd": "./manage.py createdb --noinput --nodata",
 "failed": false,
 "failed_when_result": false,
 "out": "Operations to perform:\n Apply all migrations: admin, auth, blog,
 conf, contenttypes, core, django_comments, forms, galleries, generic, pages,
 redirects, sessions, sites, twitter\nRunning migrations:\n Applying
 contenttypes.0001_initial... OK\n Applying auth.0001_initial... OK\n
 Applying admin.0001_initial... OK\n Applying
 admin.0002_logentry_remove_auto_add... OK\n Applying
 contenttypes.0002_remove_content_type_name... OK\n Applying
 auth.0002_alter_permission_name_max_length... OK\n Applying
 auth.0003_alter_user_email_max_length... OK\n Applying
 auth.0004_alter_user_username_opts... OK\n Applying
 auth.0005_alter_user_last_login_null... OK\n Applying
 auth.0006_require_contenttypes_0002... OK\n Applying
 auth.0007_alter_validators_add_error_messages... OK\n Applying
 auth.0008_alter_user_username_max_length... OK\n Applying
 sites.0001_initial... OK\n Applying blog.0001_initial... OK\n Applying
 blog.0002_auto_20150527_1555... OK\n Applying blog.0003_auto_20170411_0504...
 OK\n Applying conf.0001_initial... OK\n Applying core.0001_initial... OK\n
 Applying core.0002_auto_20150414_2140... OK\n Applying
 django_comments.0001_initial... OK\n Applying
 django_comments.0002_update_user_email_field_length... OK\n Applying
 django_comments.0003_add_submit_date_index... OK\n
 Applying pages.0001_initial... OK\n Applying forms.0001_initial... OK\n
 Applying forms.0002_auto_20141227_0224... OK\n Applying forms.0003_emailfield...
 OK\n Applying forms.0004_auto_20150517_0510... OK\n Applying
 forms.0005_auto_20151026_1600... OK\n Applying forms.0006_auto_20170425_2225...
 OK\n Applying galleries.0001_initial... OK\n Applying
 galleries.0002_auto_20141227_0224... OK\n Applying generic.0001_initial... OK\n
 Applying generic.0002_auto_20141227_0224... OK\n Applying
 generic.0003_auto_20170411_0504... OK\n Applying pages.0002_auto_20141227_0224...
 OK\n Applying pages.0003_auto_20150527_1555... OK\n Applying
 pages.0004_auto_20170411_0504... OK\n Applying redirects.0001_initial... OK\n
 Applying sessions.0001_initial... OK\n Applying sites.0002_alter_domain_unique...
 OK\n Applying twitter.0001_initial... OK\n\nCreating default site record: web
 ...\n\nInstalled 2 object(s) from 1 fixture(s)\n",
 "pythonpath": null,
 "settings": null,
 "virtualenv": "/home/vagrant/.virtualenvs/mezzanine_example"

208    Глава 10. Сложные сценарии

 }
}

Обратите внимание, что ключ changed получает значение false, хотя
состояние базы данных изменилось. Это объясняется тем, что модуль
django_manage всегда возвращает "changed":false, когда выполняет неизвест-
ные ему команды.

Можно добавить выражение changed_when, отыскивающее подстроку
"Creating tables" в возвращаемом значении out, как показано в приме-
ре 10.5.

Пример 10.5. Первая попытка добавить changed_when

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 register: result
 changed_when: '"Creating tables" in result.out'

Проблема этого подхода заключается в отсутствии переменной out,
когда сценарий выполняется повторно. Это можно увидеть, вернувшись
к примеру 10.3. Вместо нее объявлена переменная msg. Это означает, что,
запустив сценарий во второй раз, он выведет следующее (не особенно
информативное) сообщение об ошибке:

TASK: [Initialize the database] **
fatal: [default] => error while evaluating conditional: "Creating tables" in
result.out

Значит, мы должны убедиться в присутствии переменной result.out,
прежде чем обращаться к ней. Единственный способ сделать это:

changed_when: result.out is defined and "Creating tables" in result.out

Или, если result.out отсутствует, можно присвоить ей значение по
умолчанию с помощью Jinja2-фильтра default:

changed_when: '"Creating tables" in result.out|default("")'

Окончательный вариант идемпотентной задачи показан в приме-
ре 10.6.

Пример 10.6. Идемпотентная задача manage.py createdb

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

Фильтры    209

 register: result
 changed_when: '"Creating tables" in result.out|default("")'

Фильтры
Фильтры являются особенностью механизма шаблонов Jinja2. Посколь-
ку Ansible использует Jinja2 для определения значений переменных и
шаблонов, вы можете использовать фильтры внутри скобок {{ }} в ваших
сценариях, а также в файлах шаблонов. Использование фильтров схоже
с использованием конвейеров в Unix, где переменная передается че-
рез фильтр. Jinja2 поддерживает набор встроенных фильтров (https://oreil.
ly/7svtE). Кроме того, Ansible добавляет свои фильтры (https://oreil.ly/DlvWZ),
расширяя возможности фильтров Jinja2.

Далее мы рассмотрим несколько фильтров для примера, а чтобы по-
лучить полный их список, обращайтесь к официальной документации
по Jinja2 и Ansible.

Фильтр default
Фильтр default – один из самых полезных. Его применение демон-

стрирует следующий пример:

host: "{{ database_host | default('localhost') }}"

Если переменная database_host определена, то на место фигурных ско-
бок будет подставлено ее значение. Если она не определена, будет под-
ставлена строка localhost. Некоторые фильтры принимают аргументы,
некоторые – нет.

Фильтры для зарегистрированных переменных
Допустим, нам нужно запустить задачу и вывести ее результат, даже

если она потерпит неудачу. Однако если задача выполнилась с ошиб-
кой, необходимо, чтобы сценарий завершился сразу после вывода ре-
зультата. В примере 10.7 показано, как этого добиться, передав фильтр
failed в аргументе выражению failed_when.

Пример 10.7. Использование фильтра failed

- name: Run myprog
 command: /opt/myprog
 register: result
 ignore_errors: true

- debug: var=result

- debug:
 msg: "Stop running the playbook if myprog failed"

https://oreil.ly/7svtE
https://oreil.ly/7svtE
https://oreil.ly/DlvWZ

210    Глава 10. Сложные сценарии

 failed_when: result|failed

далее следуют другие задачи

В табл. 10.1 перечислены фильтры, которые можно использовать для
проверки статуса зарегистрированных переменных.

Таблица 10.1. Фильтры для возвращаемых значений задач

Имя Описание

failed True, если задача завершилась неудачей

changed True, если задача выполнила изменения

success True, если задача завершилась успешно

skipped True, если задача была пропущена

Фильтры для путей к файлам
В табл. 10.2 перечислены фильтры для работы с переменными, содер-

жащими пути к файлам в файловой системе управляющей машины.

Таблица 10.2. Фильтры для работы с путями к файлам

Имя Описание

basename Базовое имя файла

dirname Путь к файлу или каталогу

expanduser Путь к файлу со знаком ~, обозначающим путь к домашнему каталогу

realpath Канонический путь к файлу, разрешает символические ссылки

Рассмотрим следующий фрагмент сценария:

vars:
 homepage: /usr/share/nginx/html/index.html

tasks:
 - name: Copy home page
 copy:
 src: files/index.html
 dest: "{{ homepage }}"

Обратите внимание, что в нем дважды упоминается index.html: пер-
вый раз – в определении переменной homepage, второй – в определении
пути к файлу на управляющей машине.

Фильтр basename дает возможность получить имя файла index.html, вы-
делив его из полного пути, что позволит записать сценарий без повто-
рения имени файла1:
1	 Спасибо Джону Джарвису (John Jarvis) за эту подсказку.

Фильтры    211

vars:
 homepage: /usr/share/nginx/html/index.html

tasks:

 - name: Copy home page
 copy:
 src: "files/{{ homepage | basename }}"
 dest: "{{ homepage }}"

Создание собственного фильтра
В нашем примере развертывания Mezzanine мы создали файл local_

settings.py из шаблона, содержащего строку, показанную в приме-
ре 10.8.

Пример 10.8. Строка из файла local_settings.py, созданного из шаблона

ALLOWED_HOSTS = ["www.example.com", "example.com"]

У нас имеется переменная domains со списком имен хостов. Первона-
чально мы использовали цикл for, чтобы получить эту строку, но с филь-
тром шаблон будет выглядеть еще изящнее.

Существует встроенный фильтр Jinja2 с именем join, который объе-
диняет строки из заданного списка, перечисляя их через разделитель,
например через запятую. К сожалению, это не совсем тот результат, что
нам нужен. Если применить его в шаблоне:

ALLOWED_HOSTS = [{{ domains|join(", ") }}]

то мы получим строки без кавычек, как показано в примере 10.9.

Пример 10.9. Имена хостов лишились кавычек

ALLOWED_HOSTS = [www.example.com, example.com]

Если бы у нас имелся фильтр (см. пример 10.10), заключающий стро-
ки в кавычки, тогда шаблон сгенерировал бы строку, как показано в
примере 10.8.

Пример 10.10. Использование фильтра для заключения строк в кавычки

ALLOWED_HOSTS = [{{ domains|surround_by_quotes|join(", ") }}]

К сожалению, готового фильтра surround_by_quotes не существует. Но мы
можем написать его сами. На самом деле Хэнфи Сан (Hanfei Sun) уже
раскрыл этот вопрос на Stack Overflow (https://oreil.ly/Y5kqL).

Ansible ищет нестандартные фильтры в каталоге filter_plugins, находя-
щемся в одном каталоге со сценариями.

В примере 10.11 показано, как выглядит реализация фильтра.

https://oreil.ly/Y5kqL

212    Глава 10. Сложные сценарии

Пример 10.11. filter_plugins/surround_by_quotes.py

''' Взято по адресу: https://stackoverflow.com/a/68610557/571517 '''
class FilterModule():
 ''' Класс FilterModule должен иметь метод с именем filters '''
 @staticmethod
 def surround_by_quotes(a_list):
 ''' заключает в кавычки каждый элемент списка '''
 return ['"%s"' % an_element for an_element in a_list]
 def filters(self):
 ''' возвращает словарь с именами фильтров
 и соответствующими им реализациями '''
 return {'surround_by_quotes': self.surround_by_quotes}

Функция surround_by_quotes реализует фильтр Jinja2. Класс FilterMo

dule определяет метод filters, возвращающий словарь с именами функ-
ций-фильтров и ссылками на соответствующие им реализации. Класс
FilterModule обеспечивает доступность фильтров для Ansible.

Кроме того, в каталог ~/.ansible/plugins/filter или /usr/share/ansible/
plugins/filter можно установить свои плагины фильтров. Также в пере-
менной окружения ANSIBLE_FILTER_PLUGINS можно указать другой каталог,
где хранятся ваши плагины.

Дополнительные примеры и документацию с описанием плагинов
фильтров можно найти в репозитории GitHub (https://oreil.ly/hGzbQ).

Подстановки
В идеальном мире вся информация о конфигурации хранилась бы в пе-
ременных Ansible везде, где Ansible позволяет определять переменные
(например, секция vars в сценарии; файлы, перечисленные в секции
vars_files; файлы в каталогах host_vars или group_vars, которые мы обсуж-
дали в главе 3).

Увы, мир несовершенен, и порой часть конфигурации должна хра-
ниться в других местах, например в текстовом файле или в файле .csv,
и вам не хотелось бы копировать эти данные в переменные Ansible, по-
скольку в этом случае придется поддерживать две копии одних и тех же
данных, а вы верите в принцип DRY1. Возможно, данные и вовсе хра-
нятся не в файле, а в хранилище типа ключ/значение, таком как Redis.
Ansible поддерживает функции подстановки, позволяющие читать на-
стройки из разных источников, а затем использовать их в сценариях и
шаблонах.

1	 DRY (от англ. Don't Repeat Yourself) – «не повторяйтесь». Этот термин был введен в замечатель-
ной книге «The Pragmatic Programmer: From Journeyman to Master» Эндрю Ханта и Дэвида Тома-
са (Хант Э., Томас Д. Программист-прагматик. Путь от подмастерья к мастеру. Лори, 2009. ISBN
5-85582-213-3, 0-201-61622-X. – Прим. перев.).

https://oreil.ly/hGzbQ

Подстановки    213

Получить полный список функций подстановки можно командой:

$ ansible-doc -t lookup -l

Перечень встроенных функций ansible.builtin приводится в табл. 10.3.

Таблица 10.3. Функции подстановки в ansible.builtin

Имя Описание

config Отыскивает текущие значения настроек Ansible

csvfile Запись в файле .csv

dict Возвращает пары ключ/значение из словарей

dnstxt Запись в DNS типа TXT

env Переменная окружения

file Содержимое файла

fileglob Список файлов с именами, соответствующими образцу

first_found Возвращает первый найденный файл из списка

indexed_items Перезаписывает список, чтобы вернуть «индексированные элементы»

ini Читает данные из INI-файла

items Список элементов

lines Читает строки из вывода команды

list Просто возвращает данные, полученные на входе

nested Составляет список с вложенными элементами из других списков

password Случайно сгенерированный пароль

pipe Вывод команды, выполненной локально

random_choice Возвращает случайный элемент из списка

redis Значение ключа в Redis

sequence Генерирует список из последовательных чисел

subelements Обход ключей в списке словарей

template Шаблон Jinja2 после обработки

together Объединяет списки в синхронизированный список

unvault Читает содержимое файлов, зашифрованных с помощью Vault

url Возвращает содержимое URL

varnames Выполняет поиск переменных с заданными именами

vars Выполняет поиск значений переменных для подстановки в шаблон

Чтобы узнать, как пользоваться той или иной функцией, выполните
команду:

$ ansible-doc -t lookup <имя плагина>

Все плагины подстановки выполняются на управляющей машине, а
не на удаленном хосте.

214    Глава 10. Сложные сценарии

Выполнить подстановку можно с помощью функции lookup, принима-
ющей два аргумента. Первый аргумент – это строка с именем подста-
новки, второй – строка, содержащая один или несколько аргументов,
которые передаются в подстановку. Например, подстановку file можно
вызвать так:

lookup('file', '/path/to/file.txt')

В сценариях подстановки должны заключаться в фигурные скобки
{{ }}, их также можно использовать в шаблонах.

В следующих разделах будет представлен только краткий обзор неко-
торых из доступных подстановок. Более подробную информацию мож-
но найти в документации Ansible (https://oreil.ly/tnCmt).

file
Допустим, на управляющей машине имеется текстовый файл, со-

держащий открытый SSH-ключ, который необходимо скопировать на
удаленный сервер. В примере 10.12 показано, как использовать под-
становку file для чтения содержимого файла и его передачи модулю в
параметре1.

Пример 10.12. Использование подстановки file

- name: Add my public key for SSH
 authorized_key:
 user: vagrant
 key: "{{ lookup('file', item) }}"
 with_first_found:
 - ~/.ssh/id_ed25519.pub
 - ~/.ssh/id_rsa.pub
 - ~/.ssh/id_ecdsa.pub

Подстановки также можно использовать в шаблонах. Если потре-
буется использовать тот же прием для создания файла authorized_keys
с содержимым файла открытого ключа, то можно создать шаблон
Jinja2, выполняющий подстановку (пример 10.13), и затем вызвать мо-
дуль template, как показано в примере 10.14.

Пример 10.13. authorized_keys.j2

from="10.0.2.2" {{ lookup('file', '~/.ssh/id_ed25519.pub') }}

Пример 10.14. Задача, генерирующая файл authorized_keys

- name: Copy authorized_keys template
 template:

1	 Выполните команду ansible-doc authorized_key, чтобы узнать, как этот модуль может помочь
защитить конфигурацию SSH.

https://oreil.ly/tnCmt

Подстановки    215

 src: authorized_keys.j2
 dest: /home/vagrant/.ssh/authorized_keys
 owner: vagrant
 group: vagrant
 mode: '0600'

pipe
Подстановка pipe запускает внешнюю программу на управляющей

машине и принимает ее вывод. Например, с помощью подстановки
pipe можно установить открытый ключ по умолчанию для пользователя
Vagrant. Все установленные экземпляры vagrant получают один и тот же
файл insecure_private_key, благодаря чему любой разработчик сможет ис-
пользовать машины Vagrant. Открытый ключ можно получить с помо
щью команды, которую здесь мы определили как переменную (чтобы
избежать предупреждения о длине строки):

- name: Add default public key for vagrant user
 authorized_key:
 user: vagrant
 key: "{{ lookup('pipe', pubkey_cmd) }}"
 vars:
 pubkey_cmd: 'ssh-keygen -y -f ~/.vagrant.d/insecure_private_key'

env
Подстановка env извлекает значение переменной окружения на

управляющей машине. Например:

- name: Get the current shell
 debug: msg="{{ lookup('env', 'SHELL') }}"

Поскольку Бас использует командную оболочку bash, на его машине
результат выглядит так:

TASK: [Get the current shell] ***
ok: [web] ==> {
 "msg": "/bin/bash"
}

password
Подстановка password возвращает случайно сгенерированный пароль

и записывает его в файл, указанный в аргументе. Например, если по-
требуется создать пользователя базы данных с именем deploy и случай-
ным паролем, а затем записать пароль в файл pw.txt на управляющей
машине, то это можно сделать так:

216    Глава 10. Сложные сценарии

- name: Create deploy user, save random password in pw.txt
 become: true
 user:
 name: deploy
 password: "{{ lookup('password', 'pw.txt encrypt=sha512_crypt') }}"

template
Подстановка template позволяет получить результат применения шаб

лона Jinja2. Например, для шаблона, представленного в примере 10.15:

Пример 10.15. message.j2

This host runs {{ ansible_facts.distribution }}

Следующая задача:

- name: Output message from template
 debug:
 msg: "{{ lookup('template', 'message.j2') }}"
вернет такой результат:
TASK: [Output message from template] **
ok: [web] ==> {
 "msg": "This host runs Ubuntu\n"
}

csvfile
Подстановка csvfile читает запись из файла .csv. Допустим, у Лорина

имеется файл .csv, который выглядит, как показано в примере 10.16.

Пример 10.16. users.csv

username,email
lorin,lorin@ansiblebook.com
john,john@example.com
sue,sue@example.org

Ему нужно получить электронный адрес Сью (Sue), используя плагин
подстановки csvfile. Для этого можно использовать плагин, как показано
ниже:

lookup('csvfile', 'sue file=users.csv delimiter=, col=1')

Подстановка csvfile – хороший пример подстановки, принимающей
несколько аргументов. В данном случае плагину передаются четыре
аргумента:

•	 sue;
•	 file=users.csv;
•	 delimiter=,;
•	 col=1.

Подстановки    217

Имя первого аргумента можно не указывать, но имена всех остальных
должны указываться обязательно. Первый аргумент подстановки csvfile –
это элемент, который должен присутствовать в столбце 0 (первый
столбец, индексация начинается с 0) таблицы.

Остальные аргументы определяют имя файла .csv, символ-раздели-
тель и какие столбцы необходимо вернуть. В данном примере мы долж-
ны:

•	 выполнить поиск в файле users.csv, в котором поля отделяются
друг от друга запятыми;

•	 отыскать запись, в первом столбце которой хранится имя sue;
•	 вернуть значение второго столбца (столбец 1, индексация начи-

нается с 0). В ответ плагин возвращает значение sue@example.org.

Если представить, что искомое имя пользователя хранится в перемен-
ной username, то можно сконструировать строку аргументов с помощью
знака +, чтобы объединить строку из username с оставшейся частью строки
с аргументами:

lookup('csvfile', username + ' file=users.csv delimiter=, col=1')

dig
Читатели этой книги наверняка знают, что делает система доменных

имен (DNS), но на всякий случай напомним, что DNS – это служба, кото-
рая преобразует имена хостов, такие как ansiblebook.com, в соответству-
ющие им IP-адреса, такие как 64.98.145.30.

Чтобы использовать модуль dig, нужно установить пакет
dnspython для Python на управляющую машину Ansible.

Служба DNS присваивает имени хоста от одной до нескольких запи-
сей. Наиболее распространенными типами записей DNS являются запи
си A и CNAME, связывающие имена хостов с IP-адресами (записи A) или
сообщающие, что имя хоста является псевдонимом для другого имени
хоста (запись CNAME).

Протокол DNS поддерживает также записи TXT. Каждая такая запись
представлена произвольной строкой, которую можно связать с именем
хоста, чтобы любой мог получить ее с помощью клиента DNS.

Например, Лорину принадлежит домен ansiblebook.com, поэтому он
может создавать записи TXT для любых имен хостов в этом домене1.
1	 Поставщики услуг DNS обычно предлагают веб-интерфейсы, с помощью которых можно вы-

полнять задачи, связанные с DNS, например создавать записи TXT.

218    Глава 10. Сложные сценарии

В частности, он создал запись TXT для имени хоста ansiblebook.com,
содержащую номер ISBN этой книги. Получить запись TXT можно с
помощью инструмента командной строки dig, как показано в приме-
ре 10.17.

Пример 10.17. Получение записи TXT с помощью инструмента dig

$ dig +short ansiblebook.com TXT
"isbn=978-1098109158"

Подстановка dig запрашивает у DNS-сервера записи, связанные с
хостом. Вот как можно определить задачу в сценарии для запроса запи
сей TXT:

- name: Look up TXT record
 debug:
 msg: "{{ lookup('dnstxt', 'ansiblebook.com', 'qtype=TXT') }}"

Она выведет следующее:

TASK: [Look up TXT record] **
ok: [myserver] ==> {
 "msg": "isbn=978-1098109158"
}

Дополнительную информацию о плагине dig можно получить, выпол-
нив команду:

$ ansible-doc -t lookup dig

redis
Redis – популярное хранилище типа ключ/значение, часто использу-

емое как кеш, а также для хранения данных в службах очередей зада-
ний, таких как Sidekiq. С помощью подстановки redis можно извлекать
значения ключей. Ключ должен быть представлен строкой, поскольку
модуль выполняет эквивалент команды GET. Эта подстановка организо-
вана иначе, чем большинство других, потому что поддерживает поиск
списков переменной длины.

Модуль redis требует установки пакета redis для Python на
управляющей машине.

Допустим, у нас имеется сервер Redis, запущенный на управляющей
машине. Мы можем определить ключ weather со значением sunny и ключ
temp со значением 25, как показано ниже:

Подстановки    219

$ redis-cli SET weather sunny
$ redis-cli SET temp 25

Если определить в сценарии задачу извлечения этих ключей из хра-
нилища Redis:

- name: Look up values in Redis
 debug:
 msg: "{{ lookup('redis', 'weather','temp') }}"

то она вернет следующее:

TASK: [Look up values in Redis] **
ok: [localhost] ==> {
 "msg": "sunny,25"
}

Если имя хоста и порт не указаны, то по умолчанию модуль использу-
ет URL redis://localhost:6379. Чтобы задействовать другой сервер, в зада-
че можно использовать переменные окружения:

- name: Look up values in Redis
 environment:
 ANSIBLE_REDIS_HOST: redis1.example.com
 ANSIBLE_REDIS_PORT: 6379
 debug:
 msg: "{{ lookup('redis', 'weather','temp') }}"

или определить настройки в ansible.cfg:

[lookup_redis]
host: redis2.example.com
port: 6666

Кроме того, Redis можно настроить как кластер.

Написание собственного плагина подстановки
Если ни один из имеющихся плагинов вас не устраивает, всегда мож-

но написать свой. Разработка собственных плагинов подстановок не
является темой данной книги, но если вас действительно заинтересо-
вал данный вопрос, то я предлагаю изучить исходный код плагинов
входящих в состав Ansible (https://oreil.ly/DbSU4).

Написав свой плагин, поместите его в один из следующих катало-
гов:

•	 lookup_plugins в каталоге со сценарием;
•	 ~/.ansible/plugins/lookup;
•	 /usr/share/ansible/plugins/lookup;
•	 указанный в переменной окружения ANSIBLE_LOOKUP_PLUGINS.

https://oreil.ly/DbSU4

220    Глава 10. Сложные сценарии

Сложные циклы
До сих пор, описывая задачи, которые выполняют обход списка объек-
тов, мы использовали выражение with_items и в нем определяли список
объектов. Это самый распространенный способ выполнения операций
в цикле, но Ansible поддерживает также другие механизмы итераций.
Например, с помощью ключевого слова until можно повторять задачу
снова и снова, пока она не завершится с признаком успеха:

- name: Unarchive maven
 unarchive:
 src: "{{ maven_url }}"
 dest: "{{ maven_location }}"
 copy: false
 mode: '0755'
 register: maven_download
 until: maven_download is success
 retries: 5
 delay: 3

Ключевое слово loop работает эквивалентно with_items, но список дол-
жен быть однородным, т. е. он не должен содержать разнотипные дан-
ные (такие как скаляры, массивы и словари). С помощью loop можно
делать все, что угодно! В официальной документации (https://oreil.ly/bgbdX)
эта тема рассматривается достаточно подробно, поэтому я приведу
лишь несколько примеров, чтобы дать вам представление, как работа-
ют эти конструкции. Вот один из примеров сложных циклов:

- name: Iterate with loop
 debug:
 msg: "KPI: {{ item.kpi }} prio: {{ i + 1 }} goto: {{ item.dept }}"
 loop:
 - kpi: availability
 dept: operations
 - kpi: performance
 dept: development
 - kpi: security
 dept: security
 loop_control:
 index_var: i
 pause: 3

Вы можете передать список непосредственно большинству модулей,
управляющих диспетчерами пакетов, таким как apt, yum и package. В ста-
рых сценариях часто можно встретить with_items, но в настоящее время
эта конструкция почти не используется, и теперь принято определять
задачи так:

https://oreil.ly/bgbdX

Плагины with_*    221

- name: Install packages
 become: true
 package:
 name: "{{ list_of_packages }}"
 state: present

Плагины with_*
Важно помнить, что with_items опирается на плагин подстановки; items –
это лишь один из запросов. В табл. 10.4 перечислены другие доступные
конструкции организации циклов, основанные на использовании пла-
гина подстановки. Если понадобится, то вы сможете подключить свой
плагин подстановки для выполнения итераций.

Таблица 10.4. Циклические конструкции

Имя Вход Способ выполнения цикла

with_items Список Цикл по списку элементов

with_lines Команда для выполнения Цикл по строкам вывода команды

with_fileglob Шаблон поиска Цикл по именам файлов

with_first_found Список путей Первый существующий файл

with_dict Словарь Цикл по элементам словаря

with_flattened Список списков Цикл по всем элементам
вложенных списков

with_indexed_items Список Одна итерация

with_nested Список Вложенный цикл

with_random_choice Список Одна итерация

with_sequence Последовательность
целых чисел

Цикл по последовательности

with_subelements Список словарей Вложенный цикл

with_together Список списков Цикл по элементам объединенного
списка

with_inventory_hostnames Шаблон хоста Цикл по хостам, соответствующим
шаблону

Рассмотрим поближе наиболее важные из этих конструкций.

with_lines
Конструкция with_lines позволяет выполнять произвольные команды

на управляющей машине и производить итерации по строкам в резуль-
татах.

222    Глава 10. Сложные сценарии

Представьте, что у вас есть файл со списком имен и вы хотите, чтобы
компьютер произнес их. Пусть содержимое файла выглядит так:

Ronald Linn Rivest
Adi Shamir
Leonard Max Adleman
Whitfield Diffie
Martin Hellman

В примере 10.18 показано, как использовать with_lines для чтения
файла и выполнения итераций по строкам, содержащимся в нем.

Пример 10.18. Цикл с помощью with_lines

- name: Iterate over lines in a file
 say:
 msg: "{{ item }}"
 with_lines:
 - cat files/turing.txt

with_fileglob
Конструкция with_fileglob используется, когда нужно выполнить итера-

ции по набору файлов на управляющей машине.
В примере 10.19 показано, как выполнить обход файлов с расширени-

ем .pub в каталоге /var/keys, а также в подкаталоге keys, находящемся в
одном каталоге со сценарием. Затем с помощью плагина file из каждого
найденного файла извлекается его содержимое и передается модулю
author_key.

Пример 10.19. Использование with_fileglob для добавления ключей

- name: Add public keys to account
 become: true
 authorized_key:
 user: deploy
 key: "{{ lookup('file', item) }}"
 with_fileglob:
 - /var/keys/*.pub
 - keys/*.pub

with_dict
Конструкция with_dict выполняет обход элементов словаря. При ис-

пользовании этой конструкции переменная цикла item является слова-
рем с двумя ключами:

•	 key – один из ключей в словаре;
•	 value – значение, соответствующее ключу key.

Плагины with_*    223

Например, если хост имеет интерфейс enp0s8, тогда в Ansible будет су-
ществовать факт с именем ansible_enp0s8 и с ключом ipv4, содержащим
примерно такой словарь:

{
 "address": "192.168.33.10",
 "broadcast": "192.168.33.255",
 "netmask": "255.255.255.0",
 "network": "192.168.33.0"
}

Можно обойти элементы этого словаря и вывести их по одному:

- name: Iterate over ansible_enp0s8
 debug:
 msg: "{{ item.key }}={{ item.value }}"
 with_dict: "{{ ansible_enp0s8.ipv4 }}"

Результат будет выглядеть так:

TASK [Iterate over ansible_enp0s8] **
ok: [web] => (item={'key': 'address', 'value': '192.168.33.10'}) => {
 "msg": "address=192.168.33.10"
}
ok: [web] => (item={'key': 'broadcast', 'value': '192.168.33.255'}) => {
 "msg": "broadcast=192.168.33.255"
}
ok: [web] => (item={'key': 'netmask', 'value': '255.255.255.0'}) => {
 "msg": "netmask=255.255.255.0"
}
ok: [web] => (item={'key': 'network', 'value': '192.168.33.0'}) => {
 "msg": "network=192.168.33.0"
}

Возможность итераций по словарям часто помогает уменьшить объ-
ем кода.

Циклические конструкции как плагины
подстановок
Циклические конструкции реализованы в Ansible как плагины под-

становок. Достаточно подставить with в начало имени плагина подста-
новки, чтобы использовать его в форме цикла. Так, пример 10.12 можно
переписать с использованием формы with_file, как показано в приме-
ре 10.20.

Пример 10.20. Использование подстановки file в качестве конструкции цикла

- name: Add my public key for SSH
 authorized_key:

224    Глава 10. Сложные сценарии

 user: vagrant
 key: "{{ item }}"
 key_options: 'from="10.0.2.2"'
 exclusive: true
 with_file: '~/.ssh/id_ed25519.pub'

Обычно плагины подстановок используются в роли циклических
конструкций, только если требуется получить список. Именно поэтому
мы отделили плагины в табл. 10.3 (возвращающие строки) от плагинов
в табл. 10.4 (возвращающие списки).

Управление циклами
Ansible предоставляет пользователям более богатые возможности вы-
полнения циклических операций, чем большинство языков програм-
мирования, но это не означает, что вы должны использовать все богат-
ство вариантов. Старайтесь не усложнять свой код!

Выбор имени переменной цикла
Выражение loop_var позволяет дать переменной цикла другое имя,

отличное от имени item, используемого по умолчанию, как показано в
примере 10.21.

Пример 10.21. Использование имени user для переменной цикла

- name: Add users
 become: true
 user:
 name: "{{ user.name }}"
 with_items:
 - { name: gil }
 - { name: sarina }
 - { name: leanne }
 loop_control:
 loop_var: user

В примере 10.21 выражение loop_var дает лишь косметическое удоб-
ство, но вообще с его помощью можно определять гораздо более слож-
ные циклы.

В примере 10.22 реализован цикл по нескольким задачам. Для этого в
нем используется инструкция include с выражением with_items.

Однако файл vhosts.yml может включать также задачи, использующие
выражение with_items для своих целей. Такая реализация могла бы по-
родить конфликты из-за совпадения имен переменных цикла, исполь-
зуемых по умолчанию. Чтобы предотвратить такие конфликты, можно
указать другое имя в выражении loop_var для внешнего цикла.

Управление циклами    225

Пример 10.22. Использование имени vhost для переменной цикла

- name: Run a set of tasks in one loop
 include: vhosts.yml
 with_items:
 - { domain: www1.example.com }
 - { domain: www2.example.com }
 - { domain: www3.example.com }
 loop_control:
 loop_var: vhost

В подключаемой задаче (объявленной в файле vhosts.yml), которая
представлена в примере 10.23, мы теперь без опаски можем использо-
вать имя item по умолчанию.

Пример 10.23. Подключаемый файл может содержать циклы

- name: Create nginx directories
 file:
 path: "/var/www/html/{{ vhost.domain }}/{{ item }}"
 state: directory
 with_items:
 - logs
 - public_http
 - public_https
 - includes

- name: Create nginx vhost config
 template:
 src: "{{ vhost.domain }}.j2"
 dest: /etc/nginx/conf.d/{{ vhost.domain }}.conf

Мы оставили имя по умолчанию для переменной внутреннего цикла.

Управление выводом
В версии Ansible 2.2 появилось новое выражение label, помогающее

до определенной степени управлять выводом цикла.
Следующий пример содержит обычный список словарей:

- name: Create nginx vhost configs
 become: true
 template:
 src: "{{ item.domain }}.conf.j2"
 dest: "/etc/nginx/conf.d/{{ item.domain }}.conf"
 mode: '0640'
 with_items:
 - { domain: www1.example.com, tls_enabled: true }
 - { domain: www2.example.com, tls_enabled: false }

226    Глава 10. Сложные сценарии

 - { domain: www3.example.com, tls_enabled: false,
 aliases: [edge2.www.example.com, eu.www.example.com] }

По умолчанию Ansible выводит словари целиком. Если словари боль-
шие, читать вывод становится очень трудно:

TASK [Create nginx vhost configs] ***
changed: [web] => (item={'domain': 'www1.example.com', 'tls_enabled': True})
changed: [web] => (item={'domain': 'www2.example.com', 'tls_enabled': False})
changed: [web] => (item={'domain': 'www3.example.com', 'tls_enabled': False,
'aliases': ['edge2.www.example.com', 'eu.www.example.com']})

Исправить эту проблему поможет выражение label.
Поскольку нас интересуют только доменные имена, мы можем про-

сто добавить в раздел loop_control выражение label, описывающее, что
именно должно выводиться при обходе элементов:

- name: Create nginx vhost configs
 become: true
 template:
 src: "{{ item.domain }}.conf.j2"
 dest: "/etc/nginx/conf.d/{{ item.domain }}.conf"
 mode: '0640'
 with_items:
 - { domain: www1.example.com, tls_enabled: true }
 - { domain: www2.example.com, tls_enabled: false }
 - { domain: www3.example.com, tls_enabled: false,
 aliases: [edge2.www.example.com, eu.www.example.com] }
 loop_control:
 label: "for domain {{ item.domain }}"

В результате вывод получится более удобочитаемым:

TASK [Create nginx vhost configs] ***
ok: [web] => (item=for domain www1.example.com)
ok: [web] => (item=for domain www2.example.com)
ok: [web] => (item=for domain www3.example.com)

Имейте в виду, что, если используется флаг -v подробного
вывода, словари будут выводиться целиком; не используйте
этот флаг, чтобы скрыть пароли от посторонних глаз! Устанав-
ливайте в критических задачах no_log: true.

Импортирование и подключение
Функции import_* позволяют подключать задачи и даже целые роли в
разделе задач операции с помощью ключевых слов import_tasks и import_

Импортирование и подключение    227

role. Когда файлы импортируются в другие сценарии статически, Ansi-
ble запускает операции и задачи в каждом импортированном сценарии
в том порядке, в каком они определены, как если бы они были опреде-
лены непосредственно в основном сценарии.

Функции include_* позволяют динамически подключать задачи, пере-
менные и даже целые роли с помощью ключевых слов include_tasks, in-
clude_vars и include_role. Эта возможность часто применяется в ролях для
определения или группировки задач и их аргументов в отдельных под-
ключаемых файлах. Подключаемые роли и задачи могут выполняться
или не выполняться в зависимости от результатов других задач в сце-
нарии. Когда цикл используется с include_tasks или include_role, подклю-
чаемые задачи или роли будут выполняться в каждой итерации цикла
для каждого элемента.

Обратите внимание, что простое ключевое слово include
устарело, и в настоящее время рекомендуется использовать
include_tasks, include_vars и include_role.

Рассмотрим пример. В примере 10.24 определены две задачи, ис-
пользующие идентичные аргументы become, when и tags.

Пример 10.24. Идентичные аргументы

- name: Install nginx
 become: true
 when: ansible_os_family == 'RedHat'
 package:
 name: nginx
 tags:
 - nginx

- name: Ensure nginx is running
 become: yes
 when: ansible_os_family == 'RedHat'
 service:
 name: nginx
 state: started
 enabled: yes
 tags:
 -nginx

Если выделить эти две задачи в отдельный файл, как показано в при-
мере 10.25, и подключать его, как показано в примере 10.26, то можно
упростить сценарий, определив аргументы только в include_tasks.

228    Глава 10. Сложные сценарии

Пример 10.25. Выделение задач в отдельный файл

- name: Install nginx
 package:
 name: nginx

- name: Ensure nginx is running
 service:
 name: nginx
 state: started
 enabled: yes

Пример 10.26. Подключение задач и применение общих аргументов

- include_tasks: nginx_include.yml
 become: yes
 when: ansible_os_family == 'RedHat'
 tags: nginx

Динамическое подключение
Задачи , характерные для конкретной операционной системы, в ро-

лях часто определяются в отдельных файлах. В зависимости от количе-
ства операционных систем, поддерживаемых ролью, для подключения
задач может потребоваться масса шаблонного кода в include_tasks:

- include_tasks: Redhat.yml
 when: ansible_os_family == 'Redhat'

- include_tasks: Debian.yml
 when: ansible_os_family == 'Debian'

Начиная с версии 2.0, Ansible позволяет динамически подключать
файлы, используя подстановку переменных. Этот прием называется
динамическим подключением:

- name: Play platform specific actions
 include_tasks: "{{ ansible_os_family }}.yml"

Однако такое решение на основе динамического подключения имеет
свой недостаток: команда ansible-playbook --list-tasks может не вывести
задачи, подключаемые динамически, если Ansible не имеет информа-
ции для заполнения переменных, определяющих подключаемые фай-
лы. Например, переменные-факты (см. главу 5) не заполняются, когда
используется аргумент --list-tasks.

Подключение ролей
Выражение include_role – это особый вид операции подключения.

В отличие от выражения import_role, которое статически импортирует

Импортирование и подключение    229

все компоненты роли, выражение include_role позволяет явно опреде-
лить, какие компоненты подключаемой роли должны использоваться:

- name: Install nginx
 yum:
 pkg: nginx

- name: Install php
 include_role:
 name: php

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf

Выражение include_role также открывает доступ к обработ-
чикам, что позволяет, например, организовать обработку уве-
домления о перезапуске.

Поток управления роли
В каталоге задач роли можно определить отдельные файлы с зада-

чами для разных вариантов использования, а в файле задач main.yml
использовать include_tasks для каждого варианта. Однако выражение
include_role может запускать отдельные компоненты ролей, указанные в
выражении tasks_from. Представьте, что в зависимости от роли, которая
выполняется перед ролью main, задача file меняет владельца файла. Но
в этот момент соответствующая учетная запись еще не создана. Она бу-
дет создана позднее, в главной роли, во время установки пакета:

- name: Install nginx
 yum:
 pkg: nginx

- name: Install php
 include_role:
 name: php
 tasks_from: install 

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf

- name: Configure php

230    Глава 10. Сложные сценарии

 include_role:
 name: php
 tasks_from: configure 

 Подключает и выполняет install.yml из роли php.
 Подключает и выполняет configure.yml из роли php.

Блоки
Подобно выражениям include_*, выражение block реализует механизм
группировки задач. Выражение block позволяет определять условия или
аргументы сразу для всех задач в блоке:

- block:
 - name: Install nginx
 package:
 name: nginx

 - name: Ensure nginx is running
 service:
 name: nginx
 state: started
 enabled: yes

 become: yes
 when: "ansible_os_family == 'RedHat'

В отличие от include_* выражение block пока не поддерживает
циклов.

Выражение block имеет еще одно, намного более интересное приме-
нение: обработку ошибок.

Обработка ошибок с помощью блоков
Обработка ошибок всегда была непростой задачей. Система Ansible из-
начально предусматривает возможность появления ошибок на хостах.
Если возникает какая-то ошибка, она по умолчанию просто исключает
хост из игры и продолжает настраивать другие хосты, где ошибок не
наблюдалось.

Комбинацией выражений serial и max_fail_percentage Ansible дает воз-
можность выполнить какие-то действия, когда операция объявляется
потерпевшей неудачу. А благодаря выражению block, как показано в
примере 10.27, Ansible поднимает обработку ошибок на уровень выше

Обработка ошибок с помощью блоков    231

и позволяет автоматизировать повторное выполнение или откат задач,
потерпевших ошибку.

Пример 10.27. app-upgrade.yml

- block: 
 - debug: msg="You will see a failed tasks right after this"

 - name: Returns 1
 command: /usr/bin/false

 - debug: msg="You never see this message"

 rescue: 
 - debug: msg="You see this message in case of failure in the block"

 always: 
 - debug: msg="This will be always executed"

 Начало выражения block.
 rescue перечисляет задачи, выполняемые, если в выражении block

произойдет ошибка.
 Задачи, которые выполняются всегда.

Если у вас есть опыт программирования, то способ обработки ошибок
в Ansible может напомнить вам парадигму try-except-finally , и она ра-
ботает практически так же, как в следующей функции division на Pyhon:

def division(x, y):
 try:
 result = x / y
 except ZeroDivisionError:
 print("division by zero!")
 else:
 print("result is", result)
 finally:
 print("executing finally clause")

Для демонстрации возьмем самую обычную повседневную задачу:
обновление приложения. Приложение распределяется в кластере вир-
туальных машин (ВМ) и развертывается в облаке IaaS (Apache Cloud-
Stack [https://oreil.ly/zIDUh]). Кроме того, облако CloudStack поддерживает
возможность создания моментальных снимков ВМ. Упрощенный сце-
нарий, выполняющий эту работу, действует по следующему алгоритму.

1.	 Забрать ВМ из-под управления балансировщиком нагрузки.
2.	 Создать снимок ВМ перед обновлением приложения.

https://oreil.ly/zIDUh

232    Глава 10. Сложные сценарии

3.	 Обновить приложение.
4.	 Выполнить тестирование.
5.	 Откатиться обратно, если что-то пошло не так.
6.	 Вернуть ВМ под управление балансировщиком нагрузки.
7.	 Удалить снимок ВМ.

Давайте реализуем этот алгоритм в виде сценария Ansible, макси-
мально сохранив простоту (см. пример 10.28).

Пример 10.28. app-upgrade.yml

- hosts: app-servers
 serial: 1
 tasks:
 - name: Take VM out of the load balancer
 - name: Create a VM snapshot before the app upgrade
 - block:
 - name: Upgrade the application
 - name: Run smoke tests
 rescue:
 - name: Revert a VM to the snapshot after a failed upgrade
 always:
 - name: Re-add webserver to the loadbalancer
 - name: Remove a VM snapshot
...

Этот сценарий почти наверняка вернет действующую ВМ в кластер,
под управление балансировщика нагрузки, даже если попытка обнов-
ления потерпит неудачу.

Задачи в выражении always будут выполняться всегда, даже
в случае обнаружения ошибок при выполнении задач в вы-
ражении rescue! Тщательно отбирайте задачи, помещаемые
в always.

Если под управление балансировщиком нагрузки должна возвра-
щаться только обновленная ВМ, то сценарий нужно изменить, как по-
казано в примере 10.29.

Пример 10.29. app-upgrade.yml

- hosts: app-servers

Обработка ошибок с помощью блоков    233

 serial: 1

 tasks:

 - name: Take VM out of the load balancer

 - name: Create a VM snapshot before the app upgrade

 - block:
 - name: Upgrade the application
 - name: Run smoke tests

 rescue:
 - name: Revert a VM to the snapshot after a failed upgrade

 - name: Re-add webserver to the loadbalancer
 - name: Remove a VM snapshot
...

В этой версии исчезло выражение always, а две его задачи помещены
в конец операции. Они будут запущены, только если выражение rescue
выполнится успешно. То есть под управление балансировщика нагруз-
ки будут возвращаться только обновленные ВМ.

Окончательная версия сценария представлена в примере 10.30.

Пример 10.30. Сценарий обновления приложения с обработкой ошибок

- hosts: app-servers
 serial: 1
 tasks:

 - name: Take app server out of the load balancer
 delegate_to: localhost
 cs_loadbalancer_rule_member:
 name: balance_http
 vm: "{{ inventory_hostname_short }}"
 state: absent

 - name: Create a VM snapshot before an upgrade
 delegate_to: localhost
 cs_vmsnapshot:
 name: Snapshot before upgrade
 vm: "{{ inventory_hostname_short }}"
 snapshot_memory: true

 - block:

234    Глава 10. Сложные сценарии

 - name: Upgrade the application
 script: upgrade-app.sh
 - name: Run smoke tests
 script: smoke-tests.sh
 rescue:
 - name: Revert the VM to a snapshot after a failed upgrade
 delegate_to: localhost
 cs_vmsnapshot:
 name: Snapshot before upgrade
 vm: "{{ inventory_hostname_short }}"
 state: revert

 - name: Re-add app server to the loadbalancer
 delegate_to: localhost
 cs_loadbalancer_rule_member:
 name: balance_http
 vm: "{{ inventory_hostname_short }}"
 state: present

 - name: Remove a VM snapshot after successful upgrade or successful rollback
 delegate_to: localhost
 cs_vmsnapshot:
 name: Snapshot before upgrade
 vm: "{{ inventory_hostname_short }}"
 state: absent
...

Шифрование конфиденциальных данных
при помощи Vault
Сценарию установки Mezzanine требуется доступ к конфиденциальной
информации, такой как пароли базы данных и администратора. Мы
уже имели с этим дело в главе 6, где поместили все конфиденциальные
данные в отдельный файл secrets.yml. Этот файл хранился вне системы
управления версиями.

Ansible предлагает альтернативное решение: вместо хранения фай-
ла secrets.yml вне системы управления версиями можно создать его
зашифрованную копию. В этом случае, если наша система управления
версиями будет взломана, нарушитель не получит доступа к содержи-
мому файла secrets.yml, если не располагает паролем для дешифрова-
ния.

Утилита командной строки ansible-vault позволяет создавать и ре-
дактировать зашифрованный файл, который ansible-playbook будет авто
матически распознавать и расшифровывать с помощью пароля.

Шифрование конфиденциальных данных при помощи Vault    235

Шифрование в состоянии покоя
Этот инструмент способен шифровать только данные, нахо-
дящиеся в состоянии покоя (т. е. на диске). Имейте в виду, что
в задачах, использующих конфиденциальные данные, жела-
тельно устанавливать параметр no_log: true.

Вот как можно зашифровать имеющийся файл:

$ ansible-vault encrypt secrets.yml

Также можно создать новый зашифрованный файл в специальном
каталоге group_vars/all/next в папке со сценарием. Бас хранит глобаль-
ные переменные в group_vars/all/vars.yml, а конфиденциальные дан-
ные – в group_vars/all/vault (без расширения, чтобы не сбивать с толку
линтеры и редакторы).

$ mkdir -p group_vars/all/
$ ansible-vault create group_vars/all/vault

Вам будет предложено ввести пароль, а затем ansible-vault запустит
текстовый редактор, чтобы вы могли заполнить файл. Для редактирова-
ния используется редактор, указанный в переменной окружения $EDITOR.
Если эта переменная не определена в файле профиля командной обо-
лочки (export EDITOR=code), то по умолчанию используется vim.

В примере 10.31 показано, как выглядит содержимое файла, зашиф-
рованного с помощью ansible-vault.

Пример 10.31. Содержимое файла, зашифрованного с помощью ansible-vault

$ANSIBLE_VAULT;1.1;AES256
38626635666338393730353966303331643566646561363838333832623138613931363835363963
3638396538626433393763386136636235326139633666640a343437613564616635316532373635
...
35373564313132356663633633346136376332633665373634363234666363356530386562616463
35343436313638613837386661336366633832333938666532303931346434386433

К файлу, зашифрованному с помощью ansible-vault, можно обращать-
ся в секции vars_files как к обычному файлу – вам не придется ничего
менять в примере 7.28, если зашифровать файл secrets.yml.

Однако, чтобы не происходило ошибки при обращении к зашифро-
ванному файлу, нужно подсказать утилите ansible-playbook, что она долж-
на запросить пароль перед чтением зашифрованного файла. Для этого
достаточно передать аргумент --ask-vault-pass:

$ ansible-playbook --ask-vault-pass playbook.yml

236    Глава 10. Сложные сценарии

Также можно сохранить пароль в текстовом файле и сообщить ansible-
playbook, где он находится, настроив переменную окружения ANSIBLE_VAULT_
PASSWORD_FILE или добавив аргумент --vault-password-file:

$ ansible-playbook playbook.yml --vault-password-file ~/password.txt

Если аргумент параметра --vault-password-file представляет выполняе-
мый файл, Ansible запустит его и использует содержимое стандартного
вывода как пароль. Благодаря этому для передачи пароля в Ansible мож-
но использовать сценарии.

В табл. 10.5 перечислены доступные команды ansible-vault.

Таблица 10.5. Команды ansible-vault

Команда Описание

ansible-vault encrypt file.yml Шифрует текстовый файл file.yml

ansible-vault decrypt file.yml Дешифрует зашифрованный файл file.yml

ansible-vault view file.yml Выводит содержимое зашифрованного файла file.yml

ansible-vault create file.yml Создает новый зашифрованный файл file.yml

ansible-vault edit file.yml Открывает в редакторе зашифрованный файл file.yml

ansible-vault rekey file.yml Изменяет пароль к зашифрованному файлу file.yml

Шифрование с использованием разных паролей
Одного пароля может быть достаточно для небольшой команды, но

иногда бывает желательно разделить задачи и использовать разные па-
роли в разных окружениях. В версии 2.4 появилась поддержка отдель-
ного идентификатора шифрования Vault-ID для определенного зашиф-
рованного файла. Такой идентификатор подобен имени конкретного
пароля; например, для среды разработки можно определить идентифи-
катор «dev», а для промышленной среды – идентификатор «prod».

В файле ansible.cfg в разделе [defaults] мы создаем ссылку на иденти-
фикаторы паролей и соответствующие им файлы паролей (эти файлы
должны существовать):

[defaults]
vault_identity_list = dev@~/.vault_dev, prod@~/.vault_prod

Когда с помощью идентификатора шифруются данные для промыш-
ленной среды:

ansible-vault encrypt --encrypt-vault-id=prod group_vars/prod/vault

в заголовок файла помещается соответствующий идентификатор Vault-ID:

$ANSIBLE_VAULT;1.2;AES256;prod

Заключение    237

Заключение
Ansible имеет множество функций, помогающих гибко обрабатывать
пограничные случаи, будь то обработка ошибок и исключений, ввод и
преобразование данных, итерации или использование конфиденци-
альных данных. В этой главе были представлены некоторые дополни-
тельные возможности Ansible – вы можете вернуться к ней, когда они
вам действительно понадобятся. Следующая глава будет более полезна
для начинающих.

Глава 11
Управление хостами,

задачами и обработчиками

Иногда поведение по умолчанию системы Ansible не в полной мере со-
ответствует на шим желаниям. В этой главе мы познакомимся с инстру-
ментами Ansible, помогающими выбирать хосты для обслуживания, за-
пускать задачи и использовать обработчики.

Шаблоны для выбора хостов
До сих пор параметр host в наших операциях определял единичный хост
или группу, например:

hosts: web

Однако вместо единичного хоста или группы можно указать шаблон .
Мы уже видели шаблон all, который позволяет запускать задачи на всех
известных хостах:

hosts: all

Можно определить объединение двух групп с помощью двоеточия,
например все машины в группах dev и staging:

hosts: dev:staging

С помощью двоеточия и знака амперсанда (&) можно определить пе-
ресечение. Например, все серверы баз данных в окружении обкатки
(группа staging) можно выбрать так:

hosts: staging:&database

В табл. 11.1 перечислены шаблоны, поддерживаемые в Ansible. Обра-
тите внимание, что регулярные выражения всегда начинаются со знака
тильды (~).

Ограничение обслуживаемых хостов    239

Таблица 11.1. Поддерживаемые шаблоны

Действие Пример использования

Все хосты all

Все хосты *

Объединение dev:staging

Пересечение staging:&database

Исключение dev:!queue

Шаблон подстановки *.example.com

Диапазон нумерованных серверов web[5:10]

Регулярное выражение ~web\d\.example\.(com|org)

Ansible поддерживает также комбинации шаблонов. Например:

hosts: dev:staging:&database:!queue

Ограничение обслуживаемых хостов
Для ограничения перечня хостов, на которых будет выполняться сцена-
рий, используется флаг -l или --limit, как показано в примере 11.1.

Пример 11.1. Ограничение перечня обслуживаемых хостов

$ ansible-playbook -l <образец> playbook.yml

$ ansible-playbook --limit <образец> playbook.yml

Для определения комбинаций хостов можно использовать только что
описанный синтаксис шаблонов, например:

$ ansible-playbook -l 'staging:&database' playbook.yml

Запуск задачи на управляющей машине
Иногда необходимо выполнить конкретную задачу на управляющей

машине. Для этого Ansible предлагает выражение delegate_to: localhost.
Серверы в большинстве организаций не имеют прямого доступа к

интернету, но есть возможность загрузить необходимые файлы через
прокси-сервер на управляющую машину. В таком случае можно деле-
гировать загрузку файлов управляющей машине:

 - name: Download goss binary
 delegate_to: localhost
 connection: local
 become: false
 get_url:

240    Глава 11. Управление хостами, задачами и обработчиками

 url: "https://oreil.ly/RuRsL"
 dest: "~/Downloads/goss"
 mode: '0755'
 ignore_errors: true

Бас использует выражение ignore_errors : true, потому что в случае неу-
дачи приходится использовать теневой ИТ-ресурс1, чтобы получить файл
и поместить его в каталог Downloads вручную. Goss – очень мощный ин-
струмент тестирования серверов, основанный на спецификации YAML.

Сбор фактов вручную
В случаях, когда сервер SSH еще не запущен, полезно явно отключить
сбор фактов. В противном случае Ansible попытается установить соеди
нение с хостом и собрать факты еще до запуска первой задачи. Посколь-
ку доступ к фактам необходим (напоминаю, что мы используем факт
ansible_env в нашем сценарии), можно обратиться к модулю setup для
инициации сбора фактов, как показано в примере 11.2.

Пример 11.2. Ожидание запуска SSH-сервера

- name: Chapter 9 playbook
 hosts: web
 gather_facts: false
 become: false
 tasks:
 - name: Wait for web ssh daemon to be running
 wait_for:
 port: 22
 host: "{{ inventory_hostname }}"
 search_regex: OpenSSH

 - name: Gather facts
 setup:
...

Получение IP-адреса хоста
В нашем сценарии несколько имен хостов искусственно создано из IP-
адреса веб-сервера.

live_hostname: 192.168.33.10.xip.io
domains:

1	 Под использованием теневого ИТ-ресурса понимается практика, когда людям приходится при-
бегать к возможности получения требуемых файлов обходными путями, если (центральное)
подразделение ИТ ограничивает доступ к коду, находящемуся в интернете. Например, двоич-
ный файл можно упаковать в документ Microsoft Word в формате uuencode и отправить по элек-
тронной почте на свой рабочий компьютер.

Получение IP-адреса хоста    241

 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

А если мы захотим использовать такую же схему, но не определять
IP-адреса в переменных? В этом случае, если IP-адрес веб-сервера из-
менится, нам не придется вносить изменений в сценарий.

Ansible получает IP-адрес каждого хоста и сохраняет его в ansible_facts.
Каждый сетевой интерфейс представлен связанным с ним фактом. На-
пример, данные о сетевом интерфейсе eth0 хранятся в факте ansible_eth0.
Это показано в примере 11.4.

Пример 11.4. Факт ansible_eth0

"ansible_eth0": {
 "active": true,
 "device": "eth0",
 "ipv4": {
 "address": "10.0.2.15",
 "broadcast": "10.0.2.255",
 "netmask": "255.255.255.0",
 "network": "10.0.2.0"
 },
 "ipv6": [
 {
 "address": "fe80::5054:ff:fe4d:77d3",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "52:54:00:4d:77:d3",
 "module": "e1000",
 "mtu": 1500,
 "promisc": false,
 "speed": 1000,
 "type": "ether"
}

Наша машина Vagrant имеет два интерфейса, eth0 и eth1. Интерфейс
eth0 – приватный, с IP-адресом (10.0.2.15), недоступным для нас. Интер-
фейс eth1 – тот самый, которому мы присвоили IP-адрес в нашем файле
Vagrantfile (192.168.33.10).

Мы можем определить переменные следующим образом:

live_hostname: "{{ ansible_facts.eth1.ipv4.address }}.xip.io"
domains:
 - "{{ ansible_facts.eth1.ipv4.address }}.xip.io"
 - "www.{{ ansible_facts.eth1.ipv4.address }}.xip.io"
Running a Task on a Machine Other than the Host

242    Глава 11. Управление хостами, задачами и обработчиками

Запуск задачи на сторонней машине

Иногда необходимо запустить задачу, связанную с хостом, но на другом
сервере. Для этого можно использовать выражение delegate_to.

Обычно это требуется в двух случаях:

•	 для активации триггеров в системах мониторинга, таких как
Nagios;

•	 для передачи хоста под управление балансировщика нагрузки,
такого как HAProxy.

Представьте, например, что нам необходимо активировать триггеры
Nagios для всех хостов в группе web. Допустим, у нас в реестре имеется
запись nagios.example.com. На этом хосте запущена система мониторин-
га Nagios. В примере 11.5 показано, как можно было бы использовать
выражение delegate_to в этом случае.

Пример 11.5. Использование delegate_to для настройки Nagios

- name: Enable alerts for web servers
 hosts: web
 tasks:
 - name: enable alerts
 delegate_to: nagios.example.com
 nagios:
 action: enable_alerts
 service: web
 host: "{{ inventory_hostname }}"

В этом примере Ansible выполняет задачу nagios на сервере nagios.
example.com, но переменная inventory_hostname, используемая в операции,
ссылается на хост web.

Более подробно о delegate_to рассказывается в lamp_haproxy/rolling_
update.yml, в примерах проекта Ansible (https://oreil.ly/XtkLO).

Последовательное выполнение задачи на хостах
по одному
По умолчанию Ansible выполняет каждую задачу на всех хостах па-
раллельно. Но иногда требуется, чтобы задача выполнялась на хостах
по очереди. Каноническим примером является обновление серверов
приложений, которые действуют под управлением балансировщика
нагрузки. Обычно сервер приложений выводится из-под управления
балансировщиком нагрузки, обновляется и возвращается обратно. При
этом не хотелось бы приостанавливать все серверы приложений сразу,
потому что в этом случае служба станет недоступной.

https://oreil.ly/XtkLO

Последовательное выполнение задачи на хостах по одному    243

Ограничить число хостов, на которых Ansible запускает сценарий,
можно выражением serial. В примере 11.6 продемонстрирован последо-
вательный вывод хостов из-под управления балансировщиком нагруз-
ки Amazon EC2, обновление системных пакетов и возвращение хостов
обратно. (Подробнее об Amazon EC2 рассказывается в главе 14.)

Пример 11.6. Вывод хостов из-под управления балансировщиком нагрузки и
обновление пакетов

- name: Upgrade packages on servers behind load balancer
 hosts: myhosts
 serial: 1
 tasks:
 - name: Get the ec2 instance id and elastic load balancer id
 ec2_facts:

 - name: Take the host out of the elastic load balancer
 delegate_to: localhost
 ec2_elb:
 instance_id: "{{ ansible_ec2_instance_id }}"
 state: absent

 - name: Upgrade packages
 apt:
 update_cache: true
 upgrade: true

 - name: Put the host back in the elastic load balancer
 delegate_to: localhost
 ec2_elb:
 instance_id: "{{ ansible_ec2_instance_id }}"
 state: present
 ec2_elbs: "{{ item }}"
 with_items: ec2_elbs
...

В нашем примере мы передали выражению serial аргумент 1, сооб-
щив системе Ansible, что хосты должны обрабатываться последователь-
но. Если бы мы передали 2, Ansible обрабатывала бы по два хоста сразу.

Обычно, когда задача терпит неудачу, Ansible прекращает обработ-
ку данного хоста, но продолжает обработку остальных. Если исполь-
зуется балансировщик нагрузки, то, возможно, практичнее будет от-
менить выполнение всей операции до того, как ошибка возникнет на
всех хостах. Иначе может получиться так, что все хосты будут выведе-
ны из-под управления балансировщиком нагрузки и ему нечем будет
управлять.

244    Глава 11. Управление хостами, задачами и обработчиками

Определить максимальное количество хостов, находящихся в состоя-
нии ошибки (в процентах), по достижении которого Ansible прекратит
выполнение операции, можно с помощью выражения max_fail_percentage
вместе с serial. Например, допустим, что мы указали максимальный
процент неудач 25 %:

- name: Upgrade packages on servers behind load balancer
 hosts: myhosts
 serial: 1
 max_fail_percentage: 25
 tasks:
 # далее следуют задачи

Если бы у нас было 4 хоста и один потерпел неудачу при выполне-
нии задачи, тогда Ansible продолжила бы выполнение операции, пото-
му что порог в 25 % не превышен. Однако если на втором хосте задача
также завершится с ошибкой, тогда Ansible остановит всю операцию,
поскольку уже 50 % хостов будут находиться в состоянии ошибки, а это
выше 25 %. Чтобы остановить операцию при первой же ошибке, устано-
вите max_fail_percentage равным 0.

Пакетная обработка хостов
В выражение serial тоже можно передать проценты вместо числа хос
тов. В этом случае Ansible сама определит, сколько хостов из числа
участвующих в операции соответствуют этому значению, как показано
в примере 11.7.

Пример 11.7. Использование процентов в выражении serial

- name: Upgrade 50% of web servers
 hosts: myhosts
 serial: 50%
 tasks:
 # далее следуют задачи

Можно пойти еще дальше, например выполнить операцию сначала
на одном хосте, убедиться, что все прошло благополучно, а затем после-
довательно выполнять операцию на большем числе хостов сразу. Это
может пригодиться для управления большими логическими кластера-
ми независимых хостов; например 30 хостами в сети доставки содер-
жимого (Content Delivery Network, CDN).

Для реализации такого поведения, начиная с версии 2.2, Ansible по-
зволяет задавать в выражении serial список с размерами пакетов. Эле-
ментами этого могут быть целые числа или проценты, как показано в
примере 11.8.

Выбор задач для запуска    245

Пример 11.8. Использование списка с размерами пакетов в выражении serial

- name: Configure CDN servers
 hosts: cdn
 serial:
 - 1
 - 30%
 tasks:
 # далее следуют задачи

Ansible будет ограничивать количество хостов в каждом пакете, сле-
дуя по списку в serial, пока не будет достигнут последний его элемент
или не останется хостов для обработки. Это значит, что последний эле-
мент в списке serial продолжит действовать до окончания операции,
пока не будут обработаны все хосты.

Если предположить, что предыдущая операция охватывает 30 хостов
сети CDN, тогда Ansible сначала выполнит операцию на одном хосте, а
затем последовательно будет обрабатывать хосты пакетами по 30 % от
общего числа хостов (т. е. 1, 10, 10, 9).

Однократный запуск
Иногда может потребоваться выполнить задачу однократно даже при
наличии нескольких хостов. Например, представьте, что у вас есть не-
сколько серверов приложений, запущенных за балансировщиком на-
грузки, и вам необходимо осуществить миграцию базы данных, но
только на одном из них.

Для этого можно воспользоваться выражением run_once и потребовать
от Ansible выполнить задачу только один раз:

- name: Run the database migrations
 command: /opt/run_migrations
 run_once: true

Выражение run_once может также пригодиться при использовании
delegate_to: localhost, если сценарий вовлекает несколько хостов и необ-
ходимо выполнить локальную задачу только один раз:

- name: Run the task locally, only once
 delegate_to: localhost
 command /opt/my-custom-command
 run_once: true

Выбор задач для запуска
Иногда желательно, чтобы Ansible выполнила не все задачи в сценарии,
например во время разработки и отладки сценария. Для этого Ansible

246    Глава 11. Управление хостами, задачами и обработчиками

поддерживает несколько параметров командной строки, позволяющих
управлять выполнением задач.

step
Флаг --step заставляет Ansible запрашивать подтверждение на запуск

каждой задачи:

$ ansible-playbook --step playbook.yml
Perform task: Install packages (y/n/c):

В ответ можно потребовать выполнить задачу (y), пропустить ее (n)
или попросить Ansible выполнить оставшуюся часть сценария без до-
полнительных подтверждений (с).

start-at-task
Флаг --start-at-task taskname требует от Ansible выполнить сценарий,

начиная с указанной задачи. Это удобно, если какая-то задача потер-
пела неудачу из-за ошибки в одной из предыдущих задач и вы хотите
перезапустить сценарий с той задачи, которую только что исправили.

Запуск действий с тегами
Ansible позволяет добавлять теги к задачам, ролям и операциям. До-

бавив в команду флаг -t имена_тегов или --tags имена_тегов, можно потребо-
вать от Ansible выполнить только операции, роли и задачи, отмеченные
определенными тегами (пример 11.9).

Пример 11.9. Выполнение задач с указанными тегами

- name: Strategies
 hosts: strategies
 connection: local
 gather_facts: false

 tasks:

 - name: First task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
 tags:
 - first

 - name: Second task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

Стратегии выполнения    247

 tags:
 - second

 - name: Third task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
 tags:
 - third
...

Если запустить этот сценарий с аргументом --tags first, то он выведет
результаты, как показано в примере 11.10.

Пример 11.10. Запуск только задач с тегом first

$./playbook.yml --tags first
PLAY [Strategies] **
PLAY [Strategies] **
TASK [First task] **
ok: [one]
ok: [two]
ok: [three]
PLAY RECAP ***
one : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
three : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
two : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Добавление тегов к задачам, ролям и операциям – это один из спосо-
бов организовать точное управление выполняемыми действиями в сце-
нариях.

Пропуск действий с тегами
Добавив в команду флаг --skip-tags имена_тегов, можно потребовать от

Ansible выполнить только операции, роли и задачи, не имеющие ука-
занных тегов.

Стратегии выполнения
Выражение strategy на уровне операции дает дополнительную возмож-
ность управления выполнением задач на всех хостах .

Мы уже знаем, что по умолчанию используется стратегия линейно-
го выполнения linear. Согласно этой стратегии Ansible запускает задачу
на всех хостах сразу, ждет ее завершения (успешного или с ошибкой)
и затем запускает следующую задачу на всех хостах. Как результат, на
выполнение каждой задачи уходит ровно столько времени, сколько для
этого требуется самому медленному хосту.

248    Глава 11. Управление хостами, задачами и обработчиками

Давайте используем сценарий, представленный в примере 11.9, для
демонстрации применения разных стратегий. Мы используем мини-
мальный файл hosts, представленный в примере 11.11, содержащий три
хоста, для каждого из которых определена переменная sleep_seconds со
своим значением секунд.

Пример 11.11. Файл hosts с тремя хостами и с разными значениями переменной
sleep_seconds

[strategies]
one sleep_seconds=1
two sleep_seconds=6
three sleep_seconds=10

linear
Сценарий в примере 11.12 выполняет операцию с тремя задачами

локально, как того требует выражение connection: local. Каждая задача
приостанавливается на время, указанное в переменной sleep_seconds.

Пример 11.12. Сценарий для проверки стратегии linear

- name: Strategies
 hosts: strategies
 connection: local
 gather_facts: false

 tasks:

 - name: First task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Second task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Third task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
...

Если запустить этот сценарий со стратегией по умолчанию linear, он
выведет результаты, показанные в примере 11.13.

Пример 11.13. Результаты выполнения сценария со стратегией linear

$./playbook.yml -l strategies

Стратегии выполнения    249

PLAY [Strategies] **
TASK [First task] **
Sunday 08 August 2021 16:35:43 +0200 (0:00:00.016) 0:00:00.016 *********
ok: [one]
ok: [two]
ok: [three]
TASK [Second task] ***
Sunday 08 August 2021 16:35:54 +0200 (0:00:10.357) 0:00:10.373 *********
ok: [one]
ok: [two]
ok: [three]
TASK [Third task] **
Sunday 08 August 2021 16:36:04 +0200 (0:00:10.254) 0:00:20.628 *********
ok: [one]
ok: [two]
ok: [three]
PLAY RECAP ***
one : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
three : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
two : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Sunday 08 August 2021 16:36:14 +0200 (0:00:10.256) 0:00:30.884 *********
===
First task --- 10.36s
Third task --- 10.26s
Second task -- 10.25s

Мы получили уже знакомый нам упорядоченный вывод. Обратите
внимание на одинаковый порядок выполнения задач. Это объясняется
тем, что хост one всегда выполняет задачи быстрее всех (так как для него
установлена самая короткая задержка), а хост three – медленнее всех
(для него установлена самая долгая задержка).

free
В Ansible доступна еще одна стратегия – стратегия free. Действуя в со-

ответствии со стратегией free, Ansible не ждет результатов выполнения
задачи на всех хостах. Вместо этого, как только каждый хост выполнит
очередную задачу, ему тут же передается следующая.

В зависимости от быстродействия аппаратуры и задержек в сети
один из хостов может справляться с задачами быстрее других, нахо-
дящихся на другом краю света. Как результат, некоторые хосты могут
оказаться уже настроенными, тогда как другие – находиться в середи-
не операции.

Если определить для сценария стратегию free, как показано в приме-
ре 11.14, его вывод изменится.

250    Глава 11. Управление хостами, задачами и обработчиками

Пример 11.14. Выбор стратегии free в сценарии

- name: Strategies
 hosts: strategies
 connection: local
 strategy: free
 gather_facts: false

 tasks:

 - name: First task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Second task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Third task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
...

Обратите внимание, что на этот раз мы выбрали стратегию free в
третьей строке этой операции. Как показывает вывод в примере 11.15,
хост one завершил операцию еще до того, как хост three успел выполнить
первую задачу.

Пример 11.15. Результаты выполнения сценария со стратегией free

$./playbook.yml -l strategies
PLAY [Strategies] **
Sunday 08 August 2021 16:40:35 +0200 (0:00:00.020) 0:00:00.020 *********
Sunday 08 August 2021 16:40:35 +0200 (0:00:00.008) 0:00:00.028 *********
Sunday 08 August 2021 16:40:35 +0200 (0:00:00.006) 0:00:00.035 *********
TASK [First task] **
ok: [one]
Sunday 08 August 2021 16:40:37 +0200 (0:00:01.342) 0:00:01.377 *********
TASK [Second task] ***
ok: [one]
Sunday 08 August 2021 16:40:38 +0200 (0:00:01.225) 0:00:02.603 *********
TASK [Third task] **
ok: [one]
TASK [First task] **
ok: [two]
Sunday 08 August 2021 16:40:42 +0200 (0:00:03.769) 0:00:06.372 *********
ok: [three]
Sunday 08 August 2021 16:40:46 +0200 (0:00:04.004) 0:00:10.377 *********

Улучшенные обработчики    251

TASK [Second task] ***
ok: [two]
Sunday 08 August 2021 16:40:48 +0200 (0:00:02.229) 0:00:12.606 *********
TASK [Third task] **
ok: [two]
TASK [Second task] ***
ok: [three]
Sunday 08 August 2021 16:40:56 +0200 (0:00:07.998) 0:00:20.604 *********
TASK [Third task] **
ok: [three]
PLAY RECAP ***
one : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
three : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
two : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Sunday 08 August 2021 16:41:06 +0200 (0:00:10.236) 0:00:30.841 *********
===
Third task --- 10.24s
Second task --- 2.23s
First task -- 1.34s

Чтобы включить в вывод информацию о времени выполне-
ния, мы добавили строку в ansible.cfg (обратные вызовы мы
обсудим в следующей главе):

callback_whitelist = profile_tasks ;

Выражение callback_whitelist будет преобразовано в call-
back_enabled.

Улучшенные обработчики
Иногда можно обнаружить, что поведение по умолчанию обработчиков
в Ansible не соответствует желаемому. Этот подраздел описывает, как
получить более полный контроль над моментом запуска обработчиков.

Обработчики в pre_tasks и post_tasks
Когда мы обсуждали обработчики, то узнали, что они обычно выпол-

няются после всех задач, один раз и только после получения уведомле-
ний. Но не забывайте, что кроме раздела tasks существуют еще pre_tasks
и post_tasks.

Каждый раздел tasks в сценарии обрабатывается отдельно; любые об-
работчики, которым были отправлены уведомления из pre_tasks, tasks
или post_tasks, выполняются в конце каждого раздела. Как результат, ка-
кой-то обработчик может выполниться несколько раз в ходе операции
(пример 11.16).

252    Глава 11. Управление хостами, задачами и обработчиками

Пример 11.16. handlers.yml

- name: Chapter 9 advanced handlers
 hosts: localhost

 handlers:
 - name: Print message
 command: echo handler executed

 pre_tasks:
 - name: Echo pre tasks
 command: echo pre tasks
 notify: Print message

 tasks:
 - name: Echo tasks
 command: echo tasks
 notify: Print message

 post_tasks:
 - name: Post tasks
 command: echo post tasks
 notify: Print message

Если запустить этот сценарий, он выведет результаты, показанные в
примере 11.17.

Пример 11.17. Вывод handlers.yml

$./handlers.yml
PLAY [Chapter 9 advanced handlers] ***
TASK [Gathering Facts] ***
ok: [localhost]
TASK [Echo pre tasks] **
changed: [localhost]
RUNNING HANDLER [Print message] **
changed: [localhost]
TASK [Echo tasks] **
changed: [localhost]
RUNNING HANDLER [Print message] **
changed: [localhost]
TASK [Post tasks] **
changed: [localhost]
RUNNING HANDLER [Print message] **
changed: [localhost]
PLAY RECAP ***
localhost : ok=7 changed=6 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Улучшенные обработчики    253

Как видите, обработчики получают уведомления из большего числа
секций.

Принудительный запуск обработчиков
Возможно, вам показалось странным, что выше мы написали: обычно

выполняются после всех задач. Обычно, потому что таково поведение
по умолчанию. Однако Ansible позволяет управлять моментом выпол-
нения обработчиков с помощью специального модуля meta.

В примере 11.18 показана часть операции, в которой используется
модуль meta с выражением flush_handlers в середине. Сделано это, чтобы
выполнить дымовой тест и убедиться, что обращение к некоторому
URL возвращает OK. Но такая проверка не имеет большого смысла до
перезапуска служб.

Пример 11.18. Дымовой тест для домашней страницы

- name: Install home page
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html
 mode: '0644'
 notify: Restart nginx

- name: Restart nginx
 meta: flush_handlers

- name: "Test it! https://localhost:8443/index.html"
 delegate_to: localhost
 become: false
 uri:
 url: 'https://localhost:8443/index.html'
 validate_certs: false
 return_content: true
 register: this
 failed_when: "'Running on ' not in this.content"
 tags:
 - test

Добавив flush_handlers, мы принудительно послали уведомления обра-
ботчикам в середине операции.

Метакоманды
Метакоманды могут влиять на внутреннюю работу или состояние

Ansible; их можно использовать в любом месте в сценарии. В качестве
примера можно привести команду flush_handlers, которую мы только что

254    Глава 11. Управление хостами, задачами и обработчиками

обсудили, другой пример – команда refresh_inventory, повторно читаю-
щая реестр (гарантированно не из кеша). Еще пара метакоманд: clear_
facts и clear_host_errors. Также модуль meta предлагает команды управле-
ния потоком выполнения:

end_batch завершает обработку текущего пакета при использовании
serial;

end_host завершает выполнение задач на текущем хосте без генери-
рования признака ошибки;

end_play завершает выполнение операции без генерирования при-
знака ошибки.

Уведомление обработчиков из обработчиков
В файле handlers роли roles/nginx/tasks/main.yml выполняется провер-

ка конфигурации перед ее перезагрузкой и перезапуском NGINX (при-
мер 11.19). Этот шаг уменьшает вероятность простоя, если конфигура-
ция вдруг окажется некорректной.

Пример 11.19. Проверка конфигурации перед перезапуском службы

- name: Restart nginx
 debug:
 msg: "checking config first"
 changed_when: true
 notify:
 - Check nginx configuration
 - Restart nginx - after config check

- name: Reload nginx
 debug:
 msg: "checking config first"
 changed_when: true
 notify:
 - Check nginx configuration
 - Reload nginx - after config check

- name: Check nginx configuration
 command: "nginx -t"
 register: result
 changed_when: "result.rc != 0"
 check_mode: false

- name: Restart nginx - after config check
 service:

Улучшенные обработчики    255

 name: nginx
 state: restarted

- name: Reload nginx - after config check
 service:
 name: nginx
 state: reloaded

Выражение notify позволяет уведомить перечисленные в нем обра-
ботчики; они будут выполняться в указанном порядке.

Выполнение обработчиков по событиям
До появления версии Ansible 2.2 поддерживался только один способ

уведомления обработчиков: вызов notify с именем обработчика. Этот
простой способ подходит для большинства ситуаций.

Прежде чем углубиться в рассуждения, как выполнение обработчиков
по событиям может облегчить нам жизнь, рассмотрим короткий при-
мер (пример 11.20).

Пример 11.20. Использование выражения listen в обработчиках

- hosts: mailservers
 tasks:

 - name: Copy postfix config file
 copy:
 src: main.conf
 dest: /etc/postfix/main.cnf
 mode: '0640'
 notify: Postfix config changed

 handlers:
 - name: Restart postfix
 service:
 name: postfix
 state: restarted
 listen: Postfix config changed
...

Выражение listen определяет то, что мы называем событием, появ-
ления которого должны дождаться обработчики. Таким способом мож-
но отвязать уведомление, посылаемое задачей, от конкретного имени
обработчика. Чтобы уведомить больше обработчиков об одном и том
же событии, достаточно просто указать в требуемых обработчиках вы-
ражение listen с тем же событием.

256    Глава 11. Управление хостами, задачами и обработчиками

Область видимости обработчиков ограничивается уровнем
операции. Нельзя уведомить обработчики в другой опера-
ции ни с использованием, ни без использования выражения
listen.

Выполнение обработчиков по событиям:
случай SSL
Истинная ценность выражения listen в обработчиках проявляется

при определении ролей или зависимостей между ролями. Один из оче-
видных случаев, с которыми мы сталкивались, – управление сертифи-
катами SSL для разных служб.

Поскольку мы очень широко используем SSL в наших проектах, име-
ет смысл создать отдельную роль ssl. Это очень простая роль, единст
венное назначение которой – скопировать сертификаты SSL и ключи
на удаленный хост. Для этого в файле roles/ssl/tasks/main.yml (см. при-
мер 11.21) определяется несколько задач. Они предназначены для
выполнения на хостах с операционной системой Red Hat Linux из-за
конкретных путей к файлам, настроенным в переменных roles/ssl/vars/
RedHat.yml (пример 11.22).

Пример 11.21. Задачи для роли ssl

- name: Include OS specific variables
 include_vars: "{{ ansible_os_family }}.yml"

- name: Copy SSL certs
 copy:
 src: "{{ item }}"
 dest: {{ ssl_certs_path }}/
 owner: root
 group: root
 mode: '0644'
 loop: "{{ ssl_certs }}"

- name: Copy SSL keys
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_keys_path }}/"
 owner: root
 group: root
 mode: '0640'

Улучшенные обработчики    257

 with_items: "{{ ssl_keys }}"
 no_log: true
...

Пример 11.22. Переменные для систем на основе Red Hat

ssl_certs_path: /etc/pki/tls/certs
ssl_keys_path: /etc/pki/tls/private
...

В настройках по умолчанию для роли (пример 11.23) мы определили
пустые списки сертификатов и ключей SSL, поэтому никакие сертифи-
каты и ключи фактически обрабатываться не будут. У нас есть возмож-
ность переопределить эти значения по умолчанию, чтобы заставить
роль копировать файлы.

Пример 11.23. Настройки по умолчанию для роли SSL

ssl_certs: []
ssl_keys: []
...

С этого момента у нас появляется возможность использовать роль ssl
в других ролях в виде зависимости, как показано в примере 11.24, где
определена роль nginx (файл roles/nginx/meta/main.yml). Все зависимые
роли выполняются до родительской роли. То есть в нашем случае задачи
из роли ssl выполнятся до задач из роли nginx. В результате сертификаты
и ключи SSL уже будут находиться на месте и готовы к использованию
ролью nginx (например, в конфигурации vhost).

Пример 11.24. Роль nginx зависит от SSL

dependencies:
 - role: ssl
...

Логически зависимости имеют однонаправленный характер: роль ng-
inx зависит от роли ssl, как показано на рис. 11.1.

Рис. 11.1. Однонаправленная зависимость

258    Глава 11. Управление хостами, задачами и обработчиками

Конечно, роль nginx могла бы обрабатывать все аспекты, касающие-
ся веб-сервера NGINX. Эта роль имеет задачу в файле roles/nginx/tasks/
main.yml (пример 11.25) для развертывания шаблона с конфигурацией
NGINX и перезапускает службу NGINX, посылая уведомление обработ-
чику по его имени.

Пример 11.25. Задачи в роли nginx

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify: Restart nginx

Последняя строка уведомляет обработчика о необходимости переза-
пустить веб-сервер NGINX.

Соответствующий обработчик для роли nginx определен в файле roles/
nginx/handlers/main.yml, как показано в примере 11.26.

Пример 11.26. Обработчики для роли nginx

- name: Restart nginx
 service:
 name: nginx
 state: restarted

Так правильно?
Не совсем. Сертификаты SSL иногда требуется менять. И когда про-

исходит замена сертификатов, все службы, использующие их, должны
перезапускаться, чтобы взять в работу новые сертификаты.

И как это сделать? Известить обработчик restart nginx из роли ssl – вы
именно это подумали, я угадал? Хорошо, давайте попробуем.

Исправим роль ssh в файле roles/ssl/tasks/main.yml, добавив в конец
задачи копирования сертификатов и ключей выражение notify для
перезапуска NGINX, как показано в примере 11.27.

Пример 11.27. Добавление выражения notify в задачу для перезапуска NGINX

- name: Include OS specific variables
 include_vars: "{{ ansible_os_family }}.yml"

- name: Copy SSL certs
 copy:
 src: "{{ item }}"
 dest: {{ ssl_certs_path }}/
 owner: root

Улучшенные обработчики    259

 group: root
 mode: '0644'
 with_items: "{{ ssl_certs }}"
 notify: Restart nginx

- name: Copy SSL keys
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_keys_path }}/"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_keys }}"
 no_log: true
 notify: Restart nginx
...

Отлично, сработало! Но подождите, мы только что добавили новую
зависимость в нашу роль ssl: зависимость от роли nginx, как показано на
рис. 11.2.

Рис. 11.2. Роль nginx зависит от роли ssl, а роль ssl зависит от роли nginx

И что из этого следует? Если теперь использовать такую роль ssl как
зависимость в других ролях (таких как postfix, dovecot или ldap), Ansible бу-
дет жаловаться на попытку известить неизвестный обработчик, потому
что restart nginx не будет определен в этих других ролях.

Версия Ansible 1.9 сообщала о попытке известить отсутству-
ющий обработчик. Такое поведение повторно реализовано
в версии Ansible 2.2, потому что было замечено как ошибка
регресса. Однако его можно изменить с помощью параметра
error_on_missing_handler в файле ansible.cfg, который по умол-
чанию имеет значение error_on_missing_handler = true.

Кроме того, нам могло бы понадобиться добавить в роль ssl больше
имен обработчиков для уведомления. Однако такое решение очень пло-
хо масштабируется.

260    Глава 11. Управление хостами, задачами и обработчиками

Решить эту проблему поможет поддержка выполнения обработчиков
по событиям! Вместо уведомления обработчика по имени мы можем
послать событие – например, ssl_certs_changed, как показано в приме-
ре 11.28.

Пример 11.28. Уведомление обработчиков о наступлении события

- name: Include OS specific variables
 include_vars: "{{ ansible_os_family }}.yml"

- name: Copy SSL certs
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_certs_path }}/"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_certs }}"
 notify: ssl_certs_changed

- name: Copy SSL keys
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_keys_path }}/"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_keys }}"
 no_log: true
 notify: ssl_certs_changed
...

Как отмечалось, Ansible продолжит жаловаться на попытку уведомить
неизвестный обработчик, однако, чтобы избавиться от назойливых жа-
лоб, достаточно добавить пустой обработчик в роль ssl, как показано в
примере 11.29.

Пример 11.29. Добавление пустого обработчика в роль SSL

- name: SSL certs changed
 debug:
 msg: SSL changed event triggered
 listen: ssl_certs_changed
...

Вернемся к нашей роли nginx, где мы должны в ответ на событие ssl_
certs_changed перезапустить службу NGINX. Так как у нас уже есть тре-

Заключение    261

буемый обработчик, мы просто добавим в него выражение listen, как
показано в примере 11.30.

Пример 11.30. Добавление выражения listen в существующий обработчик
в роли nginx

- name: restart nginx
 debug:
 msg: "checking config first"
 changed_when: true
 notify:
 - check nginx configuration
 - restart nginx - after config check
 listen: Ssl_certs_changed
...

Если теперь опять взглянуть на граф зависимостей, то можно заме-
тить, что он изменился, как показано на рис. 11.3. Мы восстановили
однонаправленный характер зависимости и получили возможность ис-
пользовать роль ssl в других ролях.

Рис. 11.3. Использование роли ssl в других ролях

И последнее замечание для создателей ролей, размещающих свои
роли в Ansible Galaxy: добавляйте обработчики событий и отправку
событий в свои роли, если это имеет смысл.

Заключение
Вы сделали это! Теперь вы знаете, как работает Ansible. В оставшейся
части книги мы рассмотрим конкретные случаи использования Ansible
и способы расширения и защиты автоматизации.

Глава 12
Управление хостами Windows

Ansible часто называют «системой управления конфигурациями на
стероидах». По историческим причинам система Ansible имеет тесные
связи с Unix и Linux, и свидетельства этому можно наблюдать повсюду,
например в именах переменных (таких как ansible_ssh_host, ansible_ssh_
connection и sudo). Однако с самого начала Ansible включает поддержку
разных механизмов соединения.

Поддержка чужеродных операционных систем, отличных от Linux,
таких как Windows, заключалась не только в реализации механизмов
подключения к Windows, и в использовании более универсальных имен
(например, в переименовании переменной ansible_ssh_host в ansible_host
и выражения sudo в become).

Богатство библиотеки модулей для Windows уступает богатству би-
блиотеки модулей для Linux. Если вы заинтересованы в использовании
Ansible для управления системами Windows, то следите за сообщения-
ми в блоге (https://oreil.ly/s3zeS) Джордана Бореана (Jordan Borean), специ-
алиста по Windows в команде Ansible Core. Он создал образ VirtualBox,
который мы используем в этой главе.

Подключение к Windows
Добавляя поддержку Windows, разработчики Ansible решили не отхо-
дить от своего правила и не стали добавлять специального агента для
Windows – и это, как мне кажется, было верным решением. Внедрение
нового агента, прослушивающего сеть, открыло бы новые возможности
для атак извне. Ansible использует интегрированный механизм удален-
ного управления Windows Remote Management (WinRM), поддерживаю-
щий SOAP-подобный протокол, действующий поверх HTTPS.

WinRM – это наша главнейшая зависимость в Windows, и для взаимо-
действий с этим механизмом из Python нужно установить соответст
вующие пакеты в виртуальное окружение на управляющем хосте (для
аутентификации в Active Directory требуется Kerberos):

https://oreil.ly/s3zeS

PowerShell    263

$ python3 -mvenv py3
source py3/bin/activate
pip3 install --upgrade pip
pip3 install wheel
pip3 install pywinrm[kerberos]

По умолчанию Ansible пытается подключиться к удаленной машине
по протоколу SSH, поэтому мы должны явно потребовать сменить ме-
ханизм подключения. В большинстве случаев желательно включить все
хосты с Windows в отдельную группу в реестре. Выбор конкретного име-
ни для такой группы не имеет большого значения, но в последующих
примерах сценариев мы будем использовать одно и то же имя группы и
для разработки, и для промышленного окружения в отдельных файлах
реестра. Причем для разработки используется файл vagrant.ini, опреде-
ляющий среду разработки Vagrant/VirtualBox, описанную в этой главе:

[windows]
windows2022 ansible_host=127.0.0.1

Мы также добавим в файл реестра переменные с настройками сое-
динения. Если помимо окружений разработки и эксплуатации имеются
другие окружения, то имеет смысл установить переменные с настрой-
ками соединения в определенном реестре, потому что требования без-
опасности, такие как проверка сертификата, могут отличаться:

[windows:vars]
ansible_user=vagrant
ansible_password=vagrant
ansible_connection=winrm
ansible_port=45986
ansible_winrm_server_cert_validation=ignore
ansible_winrm_scheme=https
ansible_become_method=runas
ansible_become_user=SYSTEM

Как отмечалось выше, для подключения к Windows система Ansible
использует SOAP-подобный протокол, реализованный поверх HTTP. По
умолчанию Ansible пытается установить соединение по защищенному
протоколу HTTP (HTTPS) с портом 5986, если в переменной ansible_port
не указано другое значение.

PowerShell
PowerShell в Microsoft Windows – это мощный интерфейс командной
строки и язык сценариев, реализованный на платформе .NET и под-
держивающий полный спектр возможностей управления не только ло-
кальным окружением, но и удаленными хостами. Все модули Ansible
для Windows написаны для PowerShell и на языке PowerShell .

264    Глава 12. Управление хостами Windows

В 2016 году компания Microsoft открыла исходный код
PowerShell на условиях лицензии MIT. Исходный код и дво-
ичные пакеты последних версий для macOS, Ubuntu и CentOS
можно найти на GitHub (https://oreil.ly/PbQOt). На момент напи-
сания этих строк в начале 2022 года последней стабильной
была версия PowerShell 7.1.3.

Ansible требует, чтобы на удаленных хостах была установлена вер-
сия PowerShell не ниже 3. Оболочка PowerShell 3 доступна в Microsoft
Windows 7 SP1, Microsoft Windows Server 2008 SP1 и в более поздних вер-
сиях. Чтобы узнать номер версии PowerShell, установленной в системе,
выполните следующую команду в консоли PowerShell:

$PSVersionTable

Вы должны увидеть вывод, как показано на рис. 12.1.

Рис. 12.1. Оределение версии PowerShell

На управляющую машину, т. е. на машину, где работает Ansible,
требование о наличии PowerShell не распространяется!

https://oreil.ly/PbQOt

PowerShell    265

Однако в версии 3 имеются ошибки, поэтому, если по каким-то при-
чинам вы не можете использовать более новую версию, вам придется
установить последние исправления от Microsoft. Чтобы упростить про-
цесс установки, обновления и настройки PowerShell и Windows, можно
использовать сценарий, имеющийся в составе Ansible (https://oreil.ly/shpIC).
Он прекрасно подходит для настройки окружения разработки, но для
применения в промышленном окружении необходимо предпринять
дополнительные меры предосторожности.

Установить и запустить его можно командами, представленными в
примере 12.1. Сценарий ничего не нарушит, даже если запустить его
несколько раз. Но имейте в виду, что для опробования примеров в этой
главе запускать этот сценарий не требуется.

Пример 12.1. Установка в Windows поддержки Ansible

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12
$url = "https://gist.github.com/bbaassssiiee/9b4b4156cba717548650b0e115344337"
$file = "$env:temp\ConfigureRemotingForAnsible.ps1"
(New-Object -TypeName System.Net.WebClient).DownloadFile($url, $file)
powershell.exe -ExecutionPolicy ByPass -File $file

Для проверки конфигурации соединений с хостами Windows выпол-
ним команду win_ping. Похожая на команду ping в Linux, она не исполь-
зует протокол ICMP, а проверяет возможность установки соединения с
Ansible:

$ ansible windows -i inventory -m win_ping

Если в ответ появится сообщение об ошибке, как показано в приме-
ре 12.2, необходимо или получить действительный публичный серти-
фикат TLS/SSL, или добавить доверительную цепочку для существую-
щего внутреннего удостоверяющего центра (Certificate Authority, CA).

Пример 12.2. Ошибка, вызванная недействительным сертификатом

$ ansible windows -i inventory -m win_ping
windows2022 | UNREACHABLE! => {
 "changed": false,
 "msg": "ssl: HTTPSConnectionPool(host='127.0.0.1', port=45986): Max
retries exceeded with url: /wsman (Caused by
SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED]
certificate verify failed: self signed certificate (_ssl.c:1131)')))",
 "unreachable": true
}

Вы можете запретить проверку сертификатов на свой страх и риск:

ansible_winrm_server_cert_validation: ignore

https://oreil.ly/shpIC

266    Глава 12. Управление хостами Windows

Если в ответ появится вывод, как показано в примере 12.3, значит,
проверка подключения выполнилась успешно.

Пример 12.3. Результат успешной проверки подключения

$ ansible -m win_ping -i hosts windows
windows2022 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

Дополнительные сведения о подключении к хостам с использовани-
ем WinRM можно найти в онлайн-документации (https://oreil.ly/ghlAM).

Модули поддержки Windows
Встроенной поддержка Windows в Ansible позволяет:

•	 собирать факты о хостах Windows;
•	 устанавливать и удалять MSI-дистрибутивы;
•	 включать и отключать функции Windows;
•	 запускать, останавливать и управлять службами Windows;
•	 создавать и управлять локальными пользователями и группами;
•	 управлять пакетами Windows с помощью диспетчера пакетов

Chocolatey;
•	 устанавливать обновления Windows и управлять ими;
•	 загружать файлы с удаленных сайтов;
•	 отправлять и запускать любые сценарии PowerShell.

Имена модулей Ansible для Windows начинаются с префикса win_,
за исключением модуля setup, который работает в обеих ОС – Linux и
Windows. Вот простой пример создания каталога:

- name: Manage tools directory
 win_file:
 path: 'C:/Tools'
 state: directory

Краткий обзор всех модулей для Windows и примеры их применения
можно найти в онлайн-документации (https://oreil.ly/bgg0u).

Наша машина для разработки на Java
Теперь, когда у нас есть хост с Windows, напишем сценарий Ansible, на
примере которого покажем, как использовать некоторые модули для
Windows. На машину будет установлено программное обеспечение для
разработки на Java: не самая последняя версия, но в данном случае для
вас важно понять основную идею. Chocolatey – диспетчер пакетов с от-

https://oreil.ly/ghlAM
https://oreil.ly/bgg0u

Наша машина для разработки на Java    267

крытым исходным кодом для Windows. Его команда choco может уста-
навливать и обновлять множество пакетов, доступных в интернете
(https://chocolatey.org/). Модуль Ansible win_chocolatey можно использовать так
же, как модуль package в Linux, за исключением того, что он также мо-
жет установить диспетчер пакетов Chocolatey на компьютер с Windows,
если он отсутствует:

- name: Use Chocolatey
 win_chocolatey:
 name: "chocolatey"
 state: present

Широко распространена практика создания ролей для не-
скольких операционных систем. Вот как выглядит содержи-
мое файла tasks/main.yml с такой ролью:

файл с задачами для обслуживания нескольких платформ
- name: install software on Linux
 include_tasks: linux.yml
 when:
 - ansible_facts.os_family != 'Windows'
 - ansible_facts.os_family != 'Darwin'
 tags:
 - linux

- name: install software on MacOS
 include_tasks: macos.yml
 when:
 - ansible_facts.os_family == 'Darwin'
 tags:
 - mac

- name: install software on Windows
 include_tasks: windows.yml
 when: ansible_facts.os_family == 'Windows'
 tags:
 - windows
...

Создадим простой сценарий, представленный в примере 12.4, кото-
рый установит необходимое программное обеспечение и выполнит не-
которые настройки.

Пример 12.4. Сценарий для Windows

- name: Setup machine for Java development
 hosts: windows
 gather_facts: false
 vars:

https://chocolatey.org/

268    Глава 12. Управление хостами Windows

 pre_tasks:
 - name: Verifying connectivity
 win_ping:
 roles:
 - role: win_config
 tags: config
 - role: win_choco
 tags: choco
 - role: win_vscode
 tags: vscode
 - role: java_developer
 tags: java
 - role: win_updates
 tags: updates
...

Сценарий в примере 12.4 не сильно отличается от того, что мы напи-
сали бы для Linux.

Добавление локального пользователя
В этой части главы мы посмотрим, как создавать учетные записи поль-
зователей и групп в Windows. Кто-то может подумать, что это дав-
но решенная проблема: достаточно воспользоваться Microsoft Active
Directory. Однако хост с Windows может действовать где-то в облаке, а
отказ от использования службы каталогов в некоторых случаях может
дать дополнительные преимущества.

Сценарий в примере 12.5 создает группу developers и учетную запись
пользователя, чтобы на конкретном примере продемонстрировать ис-
пользование модулей. В промышленном окружении имена групп, поль-
зователей могли бы определяться в виде словарей в переменных group_
vars, а пароли в зашифрованных переменных, но для удобочитаемости
мы поместили все это прямо в сценарий.

Пример 12.5. Управление локальными группами и пользователями в Windows

- name: Ensure group developers
 win_group:
 name: developers

- name: Ensure ansible user exists
 win_user:
 name: ansible
 password: '%4UJ[nLbQz*:BJ%9gV|x'
 groups: developers
 password_expired: true
 groups_action: add

Установка программного обеспечения с помощью Chocolatey     269

Обратите внимание, что параметру password_expired присвоено значе-
ние true. Это означает, что при следующей попытке входа пользователь
должен будет задать новый пароль.

По умолчанию для групп win_user выполняет операцию replace: поль-
зователь исключается из любых других групп. Мы указали, что по
умолчанию должна выполняться операция add, чтобы предотвратить
исключение пользователей из групп. Поведение по умолчанию можно
переопределить для каждого отдельного пользователя.

Функции Windows
В Windows есть функции, которые можно включать и отключать. По-
лучите полный список таких функций, выполнив команду Get-WindowsFeature
в PowerShell, и составьте список windows_features_remove с функциями для
отключения:

- name: Manage Features
 win_feature:
 name: "{{ item }}"
 state: absent
 loop: "{{ windows_features_remove }}"

- name: Manage IIS Web-Server with sub features and management tools
 win_feature:
 name: Web-Server
 state: present
 include_sub_features: true
 include_management_tools: true
 register: win_iis_feature

- name: Reboot if installing Web-Server feature requires it
 win_reboot:
 when: win_iis_feature.reboot_required

После включения/отключения некоторых функций требуется пере-
загрузка Windows; о наличии такой необходимости говорит значение,
возвращаемое модулем win_feature.

Установка программного обеспечения
с помощью Chocolatey
Чтобы убедиться в возможности поддержки установленного программ-
ного обеспечения, создадим два списка. После этого мы сможем ис-
пользовать этот файл tasks/main.yml в роли:

- name: Use Chocolatey
 win_chocolatey:

270    Глава 12. Управление хостами Windows

 name: "chocolatey"
 state: present

- name: Ensure absense of some packages
 win_chocolatey:
 name: "{{ uninstall_choco_packages }}"
 state: absent
 force: true

- name: Ensure other packages are present
 win_chocolatey:
 name: "{{ install_choco_packages }}"
 state: present

Эти задачи хорошо справляются с небольшими пакетами, но иногда
интернет может работать не так, как хотелось бы. Чтобы сделать уста-
новку Visual Studio Code более надежной, мы добавили проверку win_stat
и повторные попытки retries:

- name: Check for vscode
 win_stat:
 path: 'C:\Program Files\Microsoft VS Code\Code.exe'
 register: vscode

- name: Install VSCode
 when: not vscode.stat.exists|bool
 win_chocolatey:
 name: "{{ vscode_distribution }}"
 state: present
 register: download_vscode
 until: download_vscode is succeeded
 retries: 10
 delay: 2

- name: Install vscode extensions
 win_chocolatey:
 name: "{{ item }}"
 state: present
 with_items: "{{ vscode_extensions }}"
 retries: 10
 delay: 2

Настройки для поддержки Java
Теперь вам должно быть понятно, как устанавливать программное
обеспечение с помощью Chocolatey, но в случае со старой доброй Java 8
нужно выполнить некоторые дополнительные настройки:

Обновление Windows    271

- name: Install Java8
 win_chocolatey:
 name: "{{ jdk_package }}"
 state: present

- name: Set Java_home
 win_environment:
 state: present
 name: JAVA_HOME
 value: "{{ win_java_home }}"
 level: machine

- name: Add Java to path
 win_path:
 elements:
 - "{{ win_java_path }}"

Как показано в этом примере, вы можете настроить переменные сре-
ды в Windows, а также переменную PATH.

Обновление Windows
Одна из важнейших повседневных задач администратора – установка
обновлений безопасности. Это одна из задач, которые администрато-
ры по-настоящему не любят в основном из-за рутины, даже притом,
что она важна и необходима, а также потому, что может породить массу
проблем, если что-то пойдет не так. Именно поэтому предпочтительнее
запретить автоматическую установку обновлений в настройках опера-
ционной системы и проверять вновь появившиеся обновления перед
их установкой в промышленном окружении.

Ansible поможет автоматизировать эту задачу с помощью простого
сценария, представленного в примере 12.6. Сценарий не только уста-
навливает обновления безопасности, но также перезагружает машину
после установки, если необходимо. В заключение он информирует всех
пользователей о необходимости выйти перед остановкой системы.

Пример 12.6. Сценарий для установки обновлений безопасности

- name: Install critical and security updates
 win_updates:
 category_names:
 - CriticalUpdates
 - SecurityUpdates
 state: installed
 register: update_result

- name: Reboot if required

272    Глава 12. Управление хостами Windows

 win_reboot:
 when: update_result.reboot_required

Ansible делает управление хостами с Microsoft Windows таким же
простым, как управление хостами Linux и Unix.

Заключение
Механизм Microsoft WinRM прекрасно работает, хотя и действует мед-
леннее, чем протокол SSH. Модули Ansible для Windows позволяют
выполнять достаточно широкий круг задач и своим удобством мало
отличаются от других модулей. Сообщество пользователей Ansible, ис-
пользующих эту систему для управления Windows, пока еще невелико.
Тем не менее Ansible – уже самый простой инструмент для управления
парком хостов с разными операционными системами.

Глава 13
Ansible и контейнеры

Проект Docker, появившийся в 2013 году, стремительно захватил мир ИТ.
Я не могу вспомнить ни одной другой технологии, которая была бы так
быстро подхвачена сообществом. В этой главе рассказывается, как с по-
мощью Ansible создавать образы и развертывать образы контейнеров.

Что такое контейнер?
При виртуализации аппаратного обеспечения программное обеспечение,
называемое гипервизором , воссоздает физическую машину целиком, вклю-
чая виртуальные процессоры, память, а также устройства, такие как диски и
сетевые интерфейсы. Виртуализация аппаратного обеспечения – очень гиб-
кая технология, поскольку виртуализации подвергается вся машина целиком.
В частности, в качестве гостевой можно установить любую операционную си-
стему, даже в корне отличающуюся от системы-носителя (например, гостевую
систему Windows Server 2016 в системе-носителе RedHat Enterprise Linux), и
останавливать и запускать виртуальную машину точно так же, как физиче-
скую. Однако за эту гибкость приходится платить затратами производитель-
ности на виртуализацию аппаратного обеспечения.
Контейнеры иногда называют виртуализацией операционной системы, что-
бы подчеркнуть отличие от технологий виртуализации аппаратного обеспе-
чения. При виртуализации операционной системы (контейнеры) гостевые
процессы просто изолируются от процессов системы-носителя. Они запу-
скаются на том же ядре, что и система-носитель, но при этом система-носи-
тель обеспечивает полную изоляцию гостевых процессов от ядра.
Контейнеризация – это одна из форм виртуализации . Когда виртуализа-
ция используется для запуска процессов в гостевой операционной системе,
эти процессы невидимы операционной системе-носителю, выполняющейся
на физической аппаратуре. В частности, процессы, запущенные в гостевой
операционной системе, не имеют прямого доступа к физическим ресурсам,
даже если наделены правами суперпользователя.
Если программное обеспечение поддержки контейнеров, такое как Docker,
действует в ОС Linux, гостевые процессы также должны быть процессами
Linux. При этом издержки оказываются гораздо ниже, чем при виртуализа-
ции аппаратного обеспечения, поскольку запускается только одна операци-
онная система. В частности, процессы в контейнерах запускаются гораздо
быстрее, чем на виртуальных машинах.

274    Глава 13. Ansible и контейнеры

Docker, Inc. (компания-создатель технологии Docker – я буду исполь-
зовать «Inc.», чтобы отличить компанию от названия продукта) создала
не просто контейнеры, но настоящую платформу, в которой контейне-
ры играют роль строительных блоков. Контейнеры в Docker – это поч-
ти то же самое, что виртуальные машины для гипервизора, такого как
VMWare или VirtualBox. Также Docker, Inc. разработала формат образов
и Docker API.

Для иллюстрации сравним образ контейнера с образом виртуальной
машины. Образ контейнера содержит файловую систему с установлен-
ной операционной системой, а также некоторые метаданные. Одно су-
щественное отличие в том, что образы контейнеров – многоуровневые.
Для создания нового образа Docker берется существующий образ и мо-
дифицируется добавлением, изменением или удалением файлов. Но-
вый образ контейнера содержит ссылку на оригинальный образ, а также
отличия в файловой системе между оригинальным и новым образами.
Благодаря многоуровневой организации образы контейнеров гораздо
меньше традиционных образов виртуальных машин, а значит, их легче
передать через интернет. Проект Docker поддерживает реестр общедо-
ступных образов (https://hub.docker.com/).

Также Docker поддерживает API удаленного управления, позволя-
ющий осуществлять взаимодействия со сторонними инструментами.
Этот API как раз используют модули docker_* в Ansible. С помощью этих
модулей можно управлять контейнерами на платформе Docker и про-
граммным обеспечением в них.

Kubernetes
Обычно Ansible не используется для управления контейнерами, дей-
ствующими под управлением Kubernetes, однако при необходимости
такое возможно благодаря наличию модуля k8s (https://oreil.ly/yRVOx). Kuber-
netes Operator SDK предлагает три других способа управления ресурсами
Kubernetes: Go Operators , Helm Charts и Ansible Operators . Наибольшей
популярностью в сообществе пользуется Helm Charts. Я не буду вдавать-
ся в подробное описание связки Kubernetes и Ansible. Но для тех, кому
интересно, отмечу, что в настоящее время Джефф Герлинг (Jeff Geerling)
пишет книгу «Ansible для Kubernetes». Джейсон Добис (Jason Dobies) и
Джошуа Вуд (Joshua Wood) в своей книге «Kubernetes Operators» (https://
learning.oreilly.com/library/view/kubernetes-operators/9781492048039/), вышедшей в из-
дательстве O'Reilly, подробно описывают применение операторов.

Ищущим общедоступное облако для опробования контейнерных тех-
нологий Red Hat предлагает облачную платформу на основе OpenShift
под названием OpenShift Online (https://oreil.ly/t6XgM), а Google – пробную
версию своей платформы Google Kubernetes Engine. Обе платформы

https://hub.docker.com/
https://oreil.ly/yRVOx
https://learning.oreilly.com/library/view/kubernetes-operators/9781492048039/
https://learning.oreilly.com/library/view/kubernetes-operators/9781492048039/
https://oreil.ly/t6XgM

Реестры    275

имеют открытый исходный код, поэтому, если у вас есть свой парк сер-
веров, вы сможете развернуть на них OpenShift или Kubernetes. Если вы
решите развернуть ПО на другой платформе, прочитайте статью в блоге
(https://oreil.ly/b0aKF) о настройке Vagrant. Также для настройки можно ис-
пользовать Kubespray (https://oreil.ly/M2jiC).

Вы должны знать, что серьезные промышленные системы часто по-
лагаются на использование Kubernetes в сочетании с «голым железом»
или виртуальными машинами для организации хранилищ или запуска
специализированного программного обеспечения; например, см. до-
кументацию по установке wire-server (https://oreil.ly/rMZYp). Ansible очень
полезна для склеивания кусочков в подобных инфраструктурах.

Жизненный цикл приложения Docker
Вот как выглядит обычный жизненный цикл приложения Docker.

1.	 Извлечение базового образа контейнера из реестра.
2.	 Настройка образа контейнера на локальной машине.
3.	 Отправка образа контейнера с локальной машины в реестр.
4.	 Извлечение образов контейнеров на удаленный хост из реестра.
5.	 Запуск контейнеров на удаленном хосте путем передачи им ин-

формации о конфигурации.

Обычно образ контейнера создается на локальной машине или в си-
стеме непрерывной интеграции, поддерживающей их создание, напри-
мер Jenkins или GitLab. После создания образ необходимо где-то сохра-
нить, откуда его легко будет загрузить на удаленные хосты.

Реестры
Образы контейнеров обычно хранятся в хранилище, называемом
реестром. Проект Docker поддерживает реестр Docker Hub, в котором
могут храниться как публичные, так и частные образы. Существует ин-
струмент командной строки со встроенной поддержкой размещения
образов в реестре и загрузки из него. Red Hat поддерживает реестр Quay
(https://quay.io/). Реестры можно размещать локально с помощью Sonatype
Nexus (https://oreil.ly/IvZ9G). Некоторые поставщики облачных услуг тоже
дают организациям-подписчикам возможность размещать свои част-
ные реестры у них в облаке.

После размещения образа контейнера в реестре можно соединиться
с удаленным хостом, загрузить образ контейнера и запустить его. Об-
ратите внимание, что, если попытаться запустить контейнер, образа
которого нет на хосте, Docker автоматически загрузит его из реестра.

https://oreil.ly/b0aKF
https://oreil.ly/M2jiC
https://oreil.ly/rMZYp
https://quay.io/
https://oreil.ly/IvZ9G

276    Глава 13. Ansible и контейнеры

Поэтому нет необходимости явно использовать команду загрузки об-
раза из реестра.

Ansible и Docker
При использовании Ansible для создания образов Docker и запуска кон-
тейнеров на удаленных хостах жизненный цикл приложения будет вы-
глядеть следующим образом.

1.	 Написание сценариев Ansible для создания образов Docker.
2.	 Выполнение сценариев для создания образов контейнеров на ло-

кальной машине.
3.	 Передача образов контейнеров с локальной машины в реестр.
4.	 Написание сценариев Ansible для извлечения образов контейне-

ров на удаленные хосты и их запуск путем передачи информации
о конфигурации.

5.	 Выполнение сценариев Ansible для запуска контейнеров.

Подключение к демону Docker
Все модули Ansible Docker взаимодействуют с демоном Docker. Если
вы работаете в Linux или в macOS и используете поддержку Docker для
Mac, все модули должны просто работать без всяких дополнительных
параметров.

Если вы работаете в macOS и используете Boot2Docker или Docker
Machine, а также когда модуль и демон Docker выполняются на разных
машинах, вам может понадобиться передать модулям дополнительную
информацию, чтобы они могли связаться с демоном Docker. В табл. 13.1
перечислены параметры, которые можно передавать модулям через
аргументы командной строки или через переменные окружения. До-
полнительные подробности вы найдете в документации с описанием
модуля docker_container.

Таблица 13.1. Параметры подключения к демону Docker

Аргумент модуля Переменная окружения Значение по умолчанию

docker_host DOCKER_HOST unix://var/run/docker.sock

tls_hostname DOCKER_TLS_HOSTNAME localhost

api_version DOCKER_API_VERSION auto

cert_path DOCKER_CERT_PATH (Нет)

ssl_version DOCKER_SSL_VERSION (Нет)

tls DOCKER_TLS no

Запуск контейнера Docker на локальной машине    277

tls_verify DOCKER_TLS_VERIFY no

timeout DOCKER_TIMEOUT 60 (секунд)

Пример применения: Ghost
В этой главе мы оставим в стороне приложение Mezzanine и возьмем
за основу другое приложение – Ghost. Ghost – это платформа блогинга
с открытым исходным кодом, напоминающая WordPress. Проект Ghost
имеет официальный контейнер Docker, который мы используем в каче-
стве основы.

Вот о чем мы поговорим далее в этой главе:

•	 запуск контейнера Ghost на локальной машине;
•	 запуск контейнера Ghost поверх контейнера NGINX с настройкой

SSL;
•	 добавление своего образа NGINX в реестр;
•	 развертывание контейнеров Ghost и NGINX на удаленной маши-

не.

Запуск контейнера Docker на локальной машине
Модуль docker_container запускает и останавливает контейнеры Docker,
реализуя некоторые возможности инструмента командной строки
docker, такие как команды run, kill и rm.

Если предположить, что программное обеспечение Docker уже уста-
новлено на локальном компьютере, то следующая команда загрузит об-
раз Ghost из реестра Docker и запустит его. Она отобразит порт 2368 в
контейнере в порт 8000 локальной машины, благодаря чему вы сможете
обратиться к Ghost по адресу http://localhost:8000.

$ ansible localhost -m docker_container -a "name=test-ghost image=ghost \
 ports=8000:2368»

В первый раз может потребоваться некоторое время на загрузку об-
раза. В случае успеха команда docker ps покажет работающий контейнер:

$ docker ps --format "table {{.ID }} {{.Image}} {{.Ports}}"
 CONTAINER ID IMAGE PORTS
 ff728315015e ghost 0.0.0.0:8000->2368/tcp

Следующая команда остановит и удалит контейнер:

$ ansible localhost -m docker_container -a "name=test-ghost state=absent"

Модуль docker_container поддерживает несколько параметров: прак
тически для всех параметров, поддерживаемых командой docker, модуль
docker_container имеет свои эквивалентные параметры.

278    Глава 13. Ansible и контейнеры

Создание образа из Dockerfile
Чтобы создать свой образ контейнера, нужно написать специаль-
ный текстовый файл, который называется Dockerfile, напоминающий
сценарий на языке командной оболочки. Стандартный образ Ghost
прекрасно работает сам по себе, но, чтобы обеспечить безопасность
доступа, перед ним нужно запустить веб-сервер с настроенной под-
держкой TLS.

Проект NGINX поддерживает свой стандартный образ NGINX, но нам
нужно настроить его для работы с Ghost и включить в нем поддержку
TLS, как мы делали это в главе 7, когда развертывали приложение Mez-
zanine. В примере 13.1 представлен файл Dockerfile, реализующий все
необходимое.

Пример 13.1. Dockerfile

FROM nginx
RUN rm /etc/nginx/conf.d/default.conf
COPY ghost.conf /etc/nginx/conf.d/ghost.conf

В примере 13.2 приводится конфигурация веб-сервера NGINX, обслу-
живающего Ghost. Главное ее отличие от примера конфигурации для
приложения Mezzanine заключается в том, что теперь NGINX взаимо-
действует с Ghost через TCP-сокет (порт 2368), тогда как для взаимодей-
ствий с Mezzanine использовался сокет домена Unix.

Другое отличие – путь к каталогу с файлами сертификатов TLS: /certs.

Пример 15.2. ghost.conf

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 return 301 https://$host$request_uri;
}
server {
 listen 443 ssl;
 client_max_body_size 10M;
 keepalive_timeout 15;
 ssl_certificate /certs/nginx.crt;
 ssl_certificate_key /certs/nginx.key;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 ssl_protocols TLSv1.3;
 ssl_ciphers EECDH+AESGCM:EDH+AESGCM;
 ssl_prefer_server_ciphers on;
 location / {

Создание образа из Dockerfile    279

 proxy_pass http://ghost:2368;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Как можно заметить в этой конфигурации, веб-сервер NGINX обра-
щается к серверу Ghost, используя имя хоста ghost. Развертывая эти кон-
тейнеры, вы должны гарантировать это соответствие; иначе контейнер
NGINX не сможет обслуживать контейнер Ghost.

Если предположить, что Dockerfile и nginx.conf хранятся в каталоге
nginx, следующая задача создаст образ ansiblebook/nginx-ghost. Здесь ис-
пользован префикс ansiblebook/, потому что мы собираемся поместить
образ в репозиторий Docker Hub с именем ansiblebook/nginx-ghost, но вы
должны использовать префикс, соответствующий вашему имени поль-
зователя на сайте Docker (https://hub.docker.com/):

- name: Create Nginx image
 docker_image:
 build:
 path: ./nginx
 source: build
 name: ansiblebook/nginx-ghost
 state: present
 force_source: "{{ force_source | default(false) }}"
 tag: "{{ tag | default('latest') }}"

Убедиться в успешном выполнении задачи можно с помощью коман-
ды docker images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ansiblebook/nginx-ghost latest e8d39f3e9e57 6 minutes ago 133MB
ghost latest e8bc5f42fe28 3 days ago 450MB
nginx latest 87a94228f133 3 weeks ago 133MB

Обратите внимание, что вызов модуля docker_image завершится ни-
чем, если образ с таким именем уже существует, даже если содержимое
Dockerfile изменилось. Если вы внесли изменения в Dockerfile и хотите
пересобрать образ, добавьте параметр force_source: true:

$ ansible-playbook build.yml -e force_source=true

В общем случае предпочтительнее добавлять параметр tag с номером
версии и увеличивать его для каждой новой сборки. В этом случае мо-
дуль docker_image будет создавать новые образы без явно заданного па-

https://hub.docker.com/

280    Глава 13. Ansible и контейнеры

раметра force_source. По умолчанию используется тег latest, но он совер-
шенно не подходит для версионирования образов.

$ ansible-playbook build.yml -e tag=v2

Отправка образа в реестр Docker
Для отправки образа в Docker Hub мы используем отдельный сценарий,
представленный в примере 13.3. Обратите внимание, что модуль docker_
login должен вызываться для регистрации в реестре до попытки отпра-
вить туда образ. Оба модуля – docker_login и docker_image – по умолчанию
используют в качестве реестра репозиторий Docker Hub.

Пример 13.3. publish.yml

- name: Publish image to docker hub
 hosts: localhost
 gather_facts: false

 vars_prompt:
 - name: username
 prompt: Enter Docker Registry username
 - name: password
 prompt: Enter Docker Registry password
 private: true

 tasks:
 - name: Authenticate with repository
 docker_login:
 username: "{{ username }}"
 password: "{{ password }}"
 tags:
 - login

 - name: Push image up
 docker_image:
 name: "ansiblebook/nginx-ghost"
 push: true
 source: local
 state: present
 tags:
 - push

Если вы собираетесь использовать другой реестр, определите пара-
метр registry_url в docker_login и префикс имени образа с именем хоста
и номером порта реестра (если реестр использует нестандартный порт

Управление несколькими контейнерами на локальной машине    281

HTTP/HTTPS). В примере 13.4 показано, как следует изменить задачи
при использовании реестра http://reg.example.com.

Пример 13.4. publish.yml для случая использования нестандартного реестра

tasks:
 - name: Authenticate with repository
 docker_login:
 registry_url: https://reg.example.com
 username: "{{ username }}"
 password: "{{ password }}"
 tags:
 - login

 - name: Push image up
 docker_image:
 name: reg.example.com/ansiblebook/nginx-ghost
 push: true
 source: local
 state: present
 tags:
 - push

Сценарий создания образа тоже необходимо изменить, чтобы отра
зить в нем новое имя образа: reg.example.com/ansiblebook/nginx-ghost.

Управление несколькими контейнерами
на локальной машине
Часто бывает нужно запустить несколько контейнеров Docker и связать
их вместе. В процессе разработки все такие контейнеры обычно запу-
скаются на локальной машине. Но в промышленном окружении они не-
редко запускаются на разных машинах.

Для разработки, когда все контейнеры выполняются на одной ма-
шине, Docker предоставляет инструмент Docker Compose, упрощающий
запуск и связывание контейнеров. Для управления контейнерами с
помощью инструмента Docker Compose можно использовать модуль
docker_compose.

В примере 13.5 представлен файл docker-compose.yml, который запус
кает NGINX и Ghost. В данном случае предполагается наличие каталога
./certs с файлами сертификатов TLS.

Пример 13.5. docker-compose.yml

version: '2'
services:
 nginx:

282    Глава 13. Ansible и контейнеры

 image: ansiblebook/nginx-ghost
 ports:
 - "8000:80"
 - "8443:443"
 volumes:
 - ${PWD}/certs:/certs
 links:
 - ghost
 ghost:
 image: ghost

В примере 13.6 приводится сценарий, который создает файл обра-
за NGINX и самоподписанные сертификаты, а затем запускает службы,
описанные в примере 13.5.

Пример 13.6. ghost.yml

- name: Run Ghost locally
 hosts: localhost
 gather_facts: false
 tasks:

 - name: Create Nginx image
 docker_image:
 build:
 path: ./nginx
 source: build
 name: bbaassssiiee/nginx-ghost
 state: present
 force_source: "{{ force_source | default(false) }}"
 tag: "{{ tag | default('v1') }}"

 - name: Create certs
 command: >
 openssl req -new -x509 -nodes
 -out certs/nginx.crt -keyout certs/nginx.key
 -subj '/CN=localhost' -days 365
 args:
 creates: certs/nginx.crt
 - name: Bring up services
 docker_compose:
 project_src: .
 state: present
...

Модуль docker_compose более интересен разработчикам приложений,
потому что, когда дело доходит до развертывания в промышленном

Запрос информации о локальном образе    283

окружении, требования времени выполнения часто диктуют необходи-
мость использования Kubernetes.

Запрос информации о локальном образе
Модуль docker_image_info позволяет запросить метаданные, описываю-
щие образ, хранящийся локально. В примере 13.7 показан сценарий,
использующий этот модуль для получения информации из образа ghost
об открытых портах и томах.

Пример 13.7. image-info.yml

- name: Get exposed ports and volumes
 hosts: localhost
 gather_facts: false
 vars:
 image: ghost
 tasks:

 - name: Get image info
 docker_image_info:
 name: ghost
 register: ghost

 - name: Extract ports
 set_fact:
 ports: "{{ ghost.images[0].Config.ExposedPorts.keys() }}"

 - name: We expect only one port to be exposed
 assert:
 that: "ports|length == 1"

 - name: Output exposed port
 debug:
 msg: "Exposed port: {{ ports[0] }}"

 - name: Extract volumes
 set_fact:
 volumes: "{{ ghost.images[0].Config.Volumes.keys() }}"

 - name: Output volumes
 debug:
 msg: "Volume: {{ item }}"
 with_items: "{{ volumes }}"
...

284    Глава 13. Ansible и контейнеры

Если запустить его, он выведет следующее:

$ ansible-playbook image-info.yml
PLAY [Get exposed ports and volumes] ***
TASK [Get image info] **
ok: [localhost]
TASK [Extract ports] ***
ok: [localhost]
TASK [We expect only one port to be exposed] ***********************************
ok: [localhost] ==> {
 "changed": false,
 "msg": "All assertions passed"
}
TASK [Output exposed port] ***
ok: [localhost] ==> {
 "msg": "Exposed port: 2368/tcp"
}
TASK [Extract volumes] ***
ok: [localhost]
TASK [Output volumes] **
ok: [localhost] => (item=/var/lib/ghost/content) => {
 "msg": "Volume: /var/lib/ghost/content"
}

Используйте модуль docker_image_info для вывода важной информации
о ваших образах.

Развертывание приложения в контейнере Docker
По умолчанию в качестве базы данных Ghost использует SQLite. В про-
мышленном окружении мы будем использовать базу данных MySQL.

Все приложение мы развернем на двух машинах. На одной (ghost) раз-
вернем контейнеры Ghost и NGINX. На другой (mysql) запустим сервер
MySQL, который будет действовать как постоянное хранилище для дан-
ных Ghost.

В этом примере предполагается, что где-то, например в group_vars/
all, определены следующие переменные, определяющие параметры на-
стройки обеих машин:

•	 database_name=ghost;
•	 database_user=ghost;
•	 database_password=mysupersecretpassword.

MySQL
Для настройки машины с MySQL нужно установить пару пакетов

(пример 13.8).

Развертывание приложения в контейнере Docker    285

Пример 13.8. Сценарий комплектования машины с MySQL

- name: Provision database machine
 hosts: mysql
 become: true
 gather_facts: false
 tasks:

 - name: Install packages for mysql
 apt:
 update_cache: true
 cache_valid_time: 3600
 name:
 - mysql-server
 - python3-pip
 state: present

 - name: Install requirements
 pip:
 name: PyMySQL
 state: present
 executable: /usr/bin/pip3

Развертывание базы данных Ghost
Чтобы развернуть базу данных Ghost, нужно создать саму базу дан-

ных и пользователя базы данных для подключения с другого компью-
тера. Для этого мы должны настроить адрес привязки сервера MySQL,
чтобы он прослушивал сеть, а затем перезапустить его с помощью об-
работчика (пример 13.9).

Пример 13.9. Развертывание базы данных

- name: Deploy database
 hosts: database
 become: true
 gather_facts: false

 handlers:
 - name: Restart Mysql
 systemd:
 name: mysql
 state: restarted
 tasks:

 - name: Listen
 lineinfile:
 path: /etc/mysql/mysql.conf.d/mysqld.cnf
 regexp: '^bind-address'

286    Глава 13. Ansible и контейнеры

 line: 'bind-address = 0.0.0.0'
 state: present
 notify: Restart Mysql

 - name: Create database
 mysql_db:
 name: "{{ database_name }}"
 state: present
 login_unix_socket: /var/run/mysqld/mysqld.sock

 - name: Create database user
 mysql_user:
 name: "{{ database_user }}"
 password: "{{ database_password }}"
 priv: '{{ database_name }}.*:ALL'
 host: '%'
 state: present
 login_unix_socket: /var/run/mysqld/mysqld.sock

В этом примере мы настроили сервер MySQL на прослушивание адре-
са 0.0.0.0 и создали пользователя для подключения с любой машины (не
самая безопасная настройка).

Веб-сервер
Развертывание веб-сервера – более сложная задача, потому что тре-

буется развернуть два контейнера: Ghost и NGINX. Кроме того, их нуж-
но связать между собой и вдобавок передать в контейнер Ghost кон-
фигурационную информацию, необходимую для подключения к базе
данных MySQL.

Чтобы связать контейнеры NGINX и Ghost, мы используем сети Docker.
То есть мы создадим свою сеть Docker, подключим к ней контейнеры, и
они смогут взаимодействовать друг с другом, используя имена контей-
неров как имена хостов.

Сеть Docker создается просто:

- name: Create network
 docker_network:
 name: "{{ net_name }}"

Имя сети предпочтительнее хранить в переменной, потому что оно
понадобится во всех запускаемых нами контейнерах. В примере 13.10
показан фрагмент сценария, отвечающий за запуск сети.

Пример 13.10. Развертывание Ghost

- name: Deploy Ghost
 hosts: ghost

Развертывание приложения в контейнере Docker    287

 become: true
 gather_facts: false

 vars:
 url: "https://{{ inventory_hostname }}"
 database_host: "{{ groups['database'][0] }}"
 data_dir: /data/ghostdata
 certs_dir: /data/certs
 net_name: ghostnet

 tasks:
 - name: Create network
 docker_network:
 name: "{{ net_name }}"

Обратите внимание: здесь предполагается наличие группы с именем
database, которая содержит единственный хост; сценарий использует эту
информацию для заполнения переменной database_host.

Веб-сервер: Ghost
Нам нужно настроить возможность соединения Ghost с базой данных

MySQL, а также предусмотреть запуск в режиме промышленной эксплу-
атации передачей флага production команде npm start. Мы также должны
записать сгенерированные файлы хранилища в смонтированный том.

Вот часть сценария, которая создает каталог для хранения данных, ге-
нерирует конфигурационный файл Ghost из шаблона и запускает кон-
тейнер, подключенный к сети ghostnet (пример 13.11).

Пример 13.11. Контейнер Ghost

- name: Create ghostdata directory
 file:
 path: "{{ data_dir }}"
 state: directory
 mode: '0750'

- name: Start ghost container
 docker_container:
 name: ghost
 image: ghost
 container_default_behavior: compatibility
 network_mode: host
 networks:
 - name: "{{ net_name }}"
 volumes:
 - "{{ data_dir }}:/var/lib/ghost/content"
 env:

288    Глава 13. Ansible и контейнеры

 database__client: mysql
 database__connection__host: "{{ database_host }}"
 database__connection__user: "{{ database_user }}"
 database__connection__password: "{{ database_password }}"
 database__connection__database: "{{ database_name }}"
 url: "https://{{ inventory_hostname }}"
 NODE_ENV: production

Обратите внимание, что нам не пришлось объявлять никакие сете-
вые порты, потому что с контейнером Ghost будет взаимодействовать
только контейнер NGINX.

Веб-сервер: NGINX
Для контейнера NGINX была определена своя конфигурация, когда мы

создавали образ ansiblebook/nginx-ghost: он настроен на подключение к
ghost:2368.

Теперь нам нужно скопировать сертификаты TLS. Поступим так же,
как в предыдущих примерах: сгенерируем самоподписанные сертифи-
каты (пример 13.12).

Пример 13.12. Контейнер NGINX

- name: Create certs directory
 file:
 path: "{{ certs_dir }}"
 state: directory
 mode: '0750'

- name: Generate tls certs
 command: >
 openssl req -new -x509 -nodes
 -out "{{ certs_dir }}/nginx.crt"
 -keyout "{{ certs_dir }}/nginx.key"
 -subj "/CN={{ ansible_host }}" -days 90
 args:
 creates: certs/nginx.crt

- name: Start nginx container
 docker_container:
 name: nginx_ghost
 image: bbaassssiiee/nginx-ghost
 container_default_behavior: compatibility
 network_mode: "{{ net_name }}"
 networks:
 - name: "{{ net_name }}"
 pull: true
 ports:

Заключение    289

 - "0.0.0.0:80:80"
 - "0.0.0.0:443:443"
 volumes:
 - "{{ certs_dir }}:/certs"

Используйте самоподписанные сертификаты только во время разра-
ботки во внутренней сети. Планируя развертывание в промышленном
окружении, получите сертификаты, заверенные авторизованным цент
ром.

Удаление контейнеров
Ansible предлагает простой способ остановки и удаления контейне-

ров, который может пригодиться в процессе разработки и тестирования
сценариев развертывания. В примере 13.13 показан сценарий, который
очищает хост ghost.

Пример 13.13. Удаление контейнера

- name: Remove all Ghost containers and networks
 hosts: ghost
 become: true
 gather_facts: false
 tasks:

 - name: Remove containers
 docker_container:
 name: "{{ item }}"
 state: absent
 container_default_behavior: compatibility
 loop:
 - nginx_ghost
 - ghost

 - name: Remove network
 docker_network:
 name: ghostnet
 state: absent

Модуль docker_container имеет логический параметр cleanup, который
гарантирует удаление контейнера после каждого запуска.

Заключение
Технология Docker ясно продемонстрировала широту своих возможно-
стей. В этой главе мы узнали, как управлять образами, контейнерами и
сетями Docker с помощью модулей Ansible.

Глава 14
Обеспечение качества

с помощью Molecule

Для разработки роли нужна тестовая инфраструктура. Использование
одноразовых контейнеров Docker идеально подходит для тестирования
с несколькими дистрибутивами или версиями Linux и избавляет от не-
обходимости выполнять тестирование на машинах, используемых дру-
гими разработчиками.

Molecule – это фреймворк тестирования ролей Ansible для Python. Ис-
пользуя его, можно провести тестирование на нескольких экземплярах с
разными операционными системами и дистрибутивами. Вы можете ис-
пользовать пару фреймворков и столько сценариев тестирования, сколь-
ко потребуется. Molecule поддерживает различные платформы виртуа-
лизации посредством плагина-драйвера. Драйвер – это библиотека для
Python, помогающая управлять тестовыми хостами (т. е. создавать и
уничтожать их).

Molecule способствует последовательной и планомерной разработке
простых и понятных ролей. Исходный код Molecule был открыт в 2015 году,
опубликован на GitHub пользователем @retr0h и в настоящее время под-
держивается сообществом в рамках проекта Ansible компании Red Hat.

Установка и настройка
Molecule зависит от версии Python 3.6 или выше и Ansible версии 2.8
или выше. В зависимости от операционной системы может потребо-
ваться установить дополнительные пакеты. Ansible не является прямой
зависимостью, а вызывается как инструмент командной строки.

Установку Python и необходимых зависимостей в Red Hat можно вы-
полнить командой:

yum install -y gcc python3-pip python3-devel openssl-devel python3-libselinux

а в Ubuntu:

apt install -y python3-pip libssl-dev

Настройка драйверов в Molecule    291

После этого можно установить Molecule с помощью pip. Мы рекомен-
дуем устанавливать этот фреймворк в виртуальной среде Python. Важно
изолировать Molecule и его зависимости Python от системных пакетов
Python. Это может сэкономить время и силы при решении проблем с
упаковкой Python.

Настройка драйверов в Molecule
В состав дистрибутива Molecule входит только один драйвер: delegated.
Если необходимо, чтобы Molecule управлял экземплярами в контейне-
рах, гипервизорах или в облаке, то следует установить соответствующие
плагины драйверов и их зависимости. Некоторые плагины драйверов
зависят от pyyaml>=5.1,<6.

Драйверы устанавливаются с помощью pip, как и другие зависимости
Python. В настоящее время зависимости Ansible распространяются в
виде коллекций (подробнее о коллекциях рассказывается в следующей
главе). Чтобы установить нужную коллекцию, выполните следующую
команду:

$ ansible-galaxy collection install <имя_коллекции>

Molecule можно адаптировать для использования в конкретном об-
лачном окружении, что позволяет создать эфемерную инфраструктуру
тестирования.

В табл. 14.1 перечислены драйверы для Molecule и их зависимости.

Таблица 14.1. Драйверы для Molecule

Плагин драйвера Публичное
облако

Частное
облако

Контей-
неры

Зависимости
Python

Коллекция
Ansible

molecule-alicloud 
ansible_allcloud
ansible_alicloud_module_utils

molecule-azure 

molecule-containers 
molecule-docker
molecule-podman

molecule-docker  docker community.docker

molecule-digitalocean 

molecule-ec2  boto3

molecule-gce 
google.cloud
community.crypto

molecule-hetznercloud 

molecule-libvirt

molecule-linode

molecule-lxd 

292    Глава 14. Обеспечение качества с помощью Molecule

Плагин драйвера Публичное
облако

Частное
облако

Контей-
неры

Зависимости
Python

Коллекция
Ansible

molecule-openstack  openstacksdk

molecule-podman  containers.podman

molecule-vagrant python-vagrant

molecule-vmware  pyvmomi

Создание роли Ansible
Создать роль можно командой:

$ ansible-galaxy role init my_role

Она создаст следующие файлы в каталоге my_role:

my_role/
├── README.md
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Чтобы инициализировать Molecule в существующей роли или доба-
вить сценарий, выполните команду:

$ molecule init scenario -r <имя_роли> --driver-name docker s_name

molecule init расширяет команду ansible-galaxy role init, создавая дерево
каталогов для роли с дополнительными файлами для тестирования с
помощью Molecule. Следующая команда поможет вам запустить Molecule:

$ molecule init role my_new_role --driver-name docker

Она создаст следующие файлы в каталоге my_new_role:

├── README.md
├── defaults
│ └── main.yml

Сценарии Molecule    293

├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── molecule
│ └── default
│ ├── converge.yml
│ ├── molecule.yml
│ └── verify.yml
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Сценарии Molecule
В примере выше можно заметить подкаталог с именем default. Это
первый сценарий Molecule, с помощью которого можно использовать
команду molecule test для проверки синтаксиса, запуска инструментов
статического анализа кода – линтеров (linter), запуска сценария Ansible
с ролью, повторного запуска для проверки идемпотентности и выпол-
нения дополнительных проверок. Все это происходит с использовани-
ем контейнера CentOS 8 в Docker.

Сценарии Molecule можно использовать, например, когда понадо-
бится протестировать Ubuntu или Debian. Сценарии Molecule можно
использовать независимо друг от друга со следующим флагом:

$ molecule test -s <имя_сценария>

Желаемое состояние
Бас часто добавляет сценарий Molecule для локального хоста, когда

создает роль, устанавливающую программное обеспечение. Используя
команды molecule converge (для установки) и molecule cleanup (для удаления),
Бас может проверить нужные состояния. Содержимое каталога tasks в
роли может содержать:

•	 absent.yml;
•	 main.yml;
•	 present.yml.

main.yml – это просто точка входа, откуда можно ссылаться на отсутст
вующие и присутствующие файлы, в зависимости от значения пере-
менной desired_state:

294    Глава 14. Обеспечение качества с помощью Molecule

- name: "Desired state is {{ desired_state }}"
 include_tasks: "{{ desired_state }}.yml"
...

Настройка сценариев в Molecule
Файл molecule/s_name/molecule.yml определяет настройки Molecule и

драйвера, используемого в сценарии.
Рассмотрим три примера конфигураций, которые могут вам при-

годиться. Минимальный пример (пример 14.1) использует локальную
машину (localhost) для тестирования с драйвером delegated. Вам нужно
лишь убедиться в возможности войти в систему по SSH. Драйвер delegated
можно использовать в паре с существующим реестром.

Пример 14.1. Драйвер delegated

dependency:
 name: galaxy
 options:
 role-file: requirements.yml
 requirements-file: collections.yml
driver:
 name: delegated
lint: |
 set -e
 yamllint .
 ansible-lint
platforms:
 - name: localhost
provisioner:
 name: ansible
verifier:
 name: ansible

Обратите внимание, что Molecule может устанавливать роли и кол-
лекции на этапе dependency, как показано в примере 14.1. Если сценарий
выполняется локально, то можно настроить параметры так, чтобы иг-
норировать сертификаты, но не поступайте так при работе с удаленны-
ми машинами с применением соответствующих сертификатов.

Управление виртуальными машинами
Molecule отлично работает с контейнерами, но в некоторых случаях,

например при работе с машинами Windows, мы предпочитаем исполь-
зовать виртуальную машину. Специалисты по данным, работающие с
Python, часто используют диспетчер пакетов Conda для Python и другие

Сценарии Molecule    295

библиотеки. Чтобы протестировать роль, устанавливающую Miniconda
(https://oreil.ly/YU8KJ) в различных операционных системах, можно создать
сценарий для Windows с отдельным файлом molecule.yml.

В примере 14.2 используется драйвер vagrant, чтобы запустить вирту-
альную машину Windows в VirtualBox.

Пример 14.2. Запуск Windows в VirtualBox с помощью Vagrant

driver:
 name: vagrant
 provider:
 name: virtualbox
lint: |
 set -e
 yamllint .
 ansible-lint
platforms:
 - name: WindowsServer2016
 box: jborean93/WindowsServer2016
 memory: 4069
 cpus: 2
 groups:
 - windows
provisioner:
 name: ansible
 inventory:
 host_vars:
 WindowsServer2016:
 ansible_user: vagrant
 ansible_password: vagrant
 ansible_port: 55986
 ansible_host: 127.0.0.1
 ansible_connection: winrm
 ansible_winrm_scheme: https
 ansible_winrm_server_cert_validation: ignore
verifier:
 name: ansible

Образ VirtualBox в этом примере был создан Джорданом Бореаном
(Jordan Borean). Он описал процесс создания этого образа с помощью
Packer в своем блоге (https://oreil.ly/CXzzg).

Управление контейнерами
Molecule может создавать сеть для контейнеров в Docker, что позволя-

ет оценивать настройки кластера. Часто в качестве базы данных, кеша и
брокера сообщений используется Redis – хранилище структур данных в

https://oreil.ly/YU8KJ
https://oreil.ly/CXzzg

296    Глава 14. Обеспечение качества с помощью Molecule

памяти с открытым исходным кодом. Redis поддерживает такие струк-
туры данных, как строки, хеши, списки, множества, отсортированные
множества с возможностью запроса диапазона, растровые изображе-
ния, гипержурналы, геопространственные индексы и потоки данных.
Он отлично подходит для использования в масштабируемых приложе-
ниях и в качестве кеша для фактов Ansible. В примере 14.3 показано
применение драйвера docker для имитации кластера Redis Sentinel, ра-
ботающего в CentOS 7 (схема кластера показана на рис. 14.1).

Рис. 14.1. Применение драйвера docker для имитации
кластера Redis Sentinel в CentOS 7

В таком кластере выполняется несколько экземпляров Redis, наблю-
дающих друг за другом; если ведущий экземпляр выйдет из строя, его
место займет один из ведомых.

Пример 14.3. Кластер Redis с Docker

dependency:
 name: galaxy
driver:
 name: docker
lint: |
 set -e
 yamllint .
 ansible-lint
platforms:
 - name: redis1_centos7
 image: milcom/centos7-systemd
 privileged: true
 groups:
 - redis_server
 - redis_sentinel
 docker_networks:

Контейнер 1 Контейнер 2 Контейнер 3

Сервер
Redis

Сервер
Redis

Сервер
Redis

Сервер
Redis

Сервер
Redis

Сервер
Redis

Сеть Docker

Команды Molecule    297

 - name: 'redis'
 ipam_config:
 - subnet: '10.16.0.0/24'
 networks:
 - name: "redis"
 ipv4_address: '10.16.0.10'
 - name: redis2_centos7
 image: milcom/centos7-systemd
 privileged: true
 groups:
 - redis_server
 - redis_sentinel
 docker_networks:
 - name: 'redis'
 ipam_config:
 - subnet: '10.16.0.0/24'
 networks:
 - name: "redis"
 ipv4_address: '10.16.0.11'
 - name: redis3_centos7
 image: milcom/centos7-systemd
 privileged: true
 groups:
 - redis_server
 - redis_sentinel
 docker_networks:
 - name: 'redis'
 ipam_config:
 - subnet: '10.16.0.0/24'
 networks:
 - name: "redis"
 ipv4_address: '10.16.0.12'
provisioner:
 name: ansible
verifier:
 name: ansible

Если выполнить команду molecule converge в каталоге роли, то мож-
но воочию увидеть, как протекает создание кластера в Docker, а также
установка и настройка программного обеспечения Redis.

Команды Molecule
Molecule – это команда с подкомандами, каждая из которых решает свою
задачу в процессе контроля качества. Назначение каждой подкоманды
приводится в табл. 14.2.

298    Глава 14. Обеспечение качества с помощью Molecule

Таблица 14.2. Подкоманды Molecule

Команда Назначение

check
Выполнить пробный прогон (уничтожение, установка зависимостей,
создание, предварительная подготовка, настройка)

cleanup
Отменить любые изменения, внесенные во внешние системы на этапах
тестирования

converge
Настроить экземпляры (установка зависимостей, создание,
предварительная подготовка, настройка)

create Запустить экземпляр

dependency Установить зависимости, определяемые ролью

destroy Уничтожить экземпляр

drivers Вывести список драйверов

idempotence Настроить экземпляр и исследовать вывод, чтобы оценить идемпотентность

init Инициализировать новую роль или сценарий Molecule

lint Выполнить статический анализ роли (зависимости, линтеры)

list Вывести информацию о состоянии экземпляров

login Выполнить вход в экземпляр

matrix Вывести матрицу шагов, выполняемых для тестирования экземпляров

prepare
Выполнить предварительную подготовку экземпляров, чтобы привести их в
определенное начальное состояние

reset Очистить временные папки Molecule

side-effect Выполнить побочные эффекты на экземплярах

syntax Проверить синтаксис роли

test Выполнить матрицу тестов

verify Запустить автоматическое тестирование экземпляров

Обычно мы начинаем с того, что запускаем команду molecule converge
несколько раз, чтобы привести роль Ansible в нужное состояние. Под-
команда converge запускает сценарий Ansible converge.yml, созданный
командой molecule init. Если для роли имеются предварительные условия,
например запуск первой другой роли, то имеет смысл создать сценарий
Ansible prepare.yml, чтобы сэкономить время на этапе разработки. При
использовании драйвера delegated создайте сценарий Ansible cleanup.
yml. Вызвать эти дополнительные сценарии Ansible можно командами
molecule prepare и molecule cleanup соответственно.

Статический анализ
Статический анализ (линтинг) осуществляется программами-лин-
терами. Они анализируют код сценария на наличие потенциальных
ошибок, не запуская его. Файлы Ansible можно анализировать на не-
скольких уровнях: команда ansible-playbook имеет параметр --syntax-check,

Статический анализ    299

также имеются другие программы, проверяющие форматирование
YAML, применение передовых приемов и оформление кода. Molecule
может запустить все эти линтеры одновременно. Если вы занимаетесь
проверкой качества кода, то вам определенно пригодятся следующие
настройки для molecule lint:

lint: |
 set -e
 yamllint .
 ansible-lint
 ansible-later

yamllint
yamllint проверяет файлы YAML (https://oreil.ly/2rhid) не только на пра-

вильность синтаксиса, но и на странности, такие как повторно исполь-
зуемые ключи и некоторые косметические проблемы, такие как длина
строк, наличие конечных пробелов, отступы и т. д. yamllint помогает соз-
давать файлы YAML оформленные единообразно, что очень полезно,
когда вы передаете свой код другим. Обычно мы создаем для этого лин-
тера конфигурационный файл с именем .yamllint (пример 14.4).

Пример 14.4. Конфигурационный файл .yamllint

extends: default
rules:
 braces:
 max-spaces-inside: 1
 level: error
 document-start: enable
 document-end: enable
 key-duplicates: enable
 line-length: disable
 new-line-at-end-of-file: enable
 new-lines:
 type: unix
 trailing-spaces: enable
 truthy: enable
...

Вы можете включить или отключить эти правила. Мы рекомендуем
придерживаться хотя бы настроек yamllint по умолчанию.

ansible-lint
Линтер ansible-lint был создан Уиллом Темзом (Will Thames) как ин-

струмент статического анализа для Ansible. Он проверяет сценарии

https://oreil.ly/2rhid

300    Глава 14. Обеспечение качества с помощью Molecule

Ansible на возможность их улучшения. В своей работе он использует ка-
талог с правилами (https://oreil.ly/WtN09), реализованными в виде сценари-
ев на Python. При желании вы можете создать дополнительный каталог
со своими правилами, если понадобится проверить какое-то конкрет-
ное поведение.

Запуск проверки сценария Ansible производится командой ansible-lint
с именем файла сценария в аргументе. Например, чтобы запустить ана-
лиз примера 14.5, выполните команду:

$ ansible-lint lintme.yml

Пример 14.5. lintme.yml

- name: Run ansible-lint with the roles
 hosts: all
 gather_facts: true
 become: yes
 roles:
 - ssh
 - miniconda
 - redis

После запуска ansible-lint с примером 14.5 она выведет следующие со-
общения:

WARNING Listing 3 violation(s) that are fatal
yaml: truthy value should be one of [false, true] (yaml[truthy])
lintme.yml:6

yaml: missing document end "..." (yaml[document-end])
lintme.yml:14

yaml: too many blank lines (3> 0) (yaml[empty-lines])
lintme.yml:14

You can skip specific rules by adding them to your configuration file:
.config/ansible-lint.yml
skip_list:
 - yaml # Violations reported by yamllint.

Finished with 3 failure(s), 0 warning(s) on 22 files.

Обычно желательно сразу же исправлять все обнаруженные пробле-
мы: это упростит поддержку вашего кода Ansible1. Линтер ansible-lint
поддерживается сообществом Ansible на GitHub.

1	 Как вариант, можно сохранить skip_list: в файле с именем .ansible-lint.

https://oreil.ly/WtN09

Верификаторы    301

ansible-later
ansible-later – еще один инструмент для проверки ролей и сценари-

ев Ansible. Основой для него послужил другой проект (заброшенный)
Уилла Темза (Will Thames) – ansible-review. Самая примечательная осо-
бенность этого инструмента – он помогает обеспечить соблюдение ре-
комендаций по оформлению кода (https://oreil.ly/Yq7nq). Следование этим
рекомендациям поможет сделать роли Ansible более понятными для
всех, кто будет сопровождать ваш код, и сократить время устранения
неполадок. ansible-later может дополнять yamllint и ansible-lint, если на-
строить совместимость в файле .later.yml в каталоге верхнего уровня
(пример 14.6).

Пример 14.6. Конфигурационный файл для ansible-later (.later.yml)

ansible:
 # Добавьте имена своих модулей Ansible, которые вы используете.
 custom_modules: []
 # Список логических литералов, совместимых с yamllint (ANSIBLE0014)
 literal-bools:
 - "true"
 - "false"
...

Верификаторы
Верификаторы – это инструменты, помогающие подтвердить успешное
выполнение роли в сценарии Ansible. Мы знаем, что все модули Ansible
тщательно протестированы, тем не менее результат выполнения роли не
гарантируется. Хорошей практикой считается автоматизация тестирова-
ния для подтверждения результата. Для Molecule доступны три верифи-
катора.

Ansible
	 `Верификатор по умолчанию.

Goss
	 Сторонний верификатор, основанный на спецификациях YAML.

TestInfra
	 Фреймворк тестирования для Python

Верификаторы Goss и TestInfra используют файлы из подкаталога
tests сценария Molecule, test_default.yaml для Goss и test_default.py для
TestInfra.

https://oreil.ly/Yq7nq

302    Глава 14. Обеспечение качества с помощью Molecule

Ansible
Для проверки результатов шагов converge и idempotence можно написать

сценарий Ansible с именем verify.yml, применяющий модули Ansible, та-
кие как wait_for, package_facts, service_facts, uri и assert. Запустить проверку
можно командой:

$ molecule verify

Goss
Легко и быстро выполнить проверку сервера можно с помощью

Goss – программы на основе YAML (https://oreil.ly/QTJ4H), опубликованной
Ахмедом Эльсаббахи (Ahmed Elsabbahy). Чтобы увидеть, что можно
проверить с помощью Goss, рассмотрим файл test_sshd.yml в приме-
ре 14.7. Он проверяет, запущена ли служба SSH, запускается ли она
после перезагрузки, прослушивает ли она TCP-порт 22, наличие клю-
чей хоста и т. д.

Пример 14.7. Goss-файл для проверки SSH-сервера

file:
 /etc/ssh/ssh_host_ed25519_key.pub:
 exists: true
 mode: '0644'
 owner: root
 group: root
 filetype: file
 contains:
 - 'ssh-ed25519 '
port:
 tcp:22:
 listening: true
 ip:
 - 0.0.0.0
service:
 sshd:
 enabled: true
 running: true
user:
 sshd:
 exists: true
 uid: 74
 gid: 74
 groups:
 - sshd

https://oreil.ly/QTJ4H

Верификаторы    303

 home: /var/empty/sshd
 shell: /sbin/nologin
group:
 sshd:
 exists: true
process:
 sshd:
 running: true

Если запустите Goss и передать этот файл для проверки настроек сер-
вера, то вы получите примерно такой вывод:

$ /usr/local/bin/goss -g /tmp/molecule/goss/test_sshd.yml v -f tap
1..18
ok 1 - Group: sshd: exists: matches expectation: [true]
ok 2 - File: /etc/ssh/ssh_host_ed25519_key.pub: exists: matches expectation:
[true]
ok 3 - File: /etc/ssh/ssh_host_ed25519_key.pub: mode: matches expectation:
["0644"]
ok 4 - File: /etc/ssh/ssh_host_ed25519_key.pub: owner: matches expectation:
["root"]
ok 5 - File: /etc/ssh/ssh_host_ed25519_key.pub: group: matches expectation:
["root"]
ok 6 - File: /etc/ssh/ssh_host_ed25519_key.pub: filetype: matches expectation:
["file"]
ok 7 - File: /etc/ssh/ssh_host_ed25519_key.pub: contains: all expectations found:
[ssh-ed25519]
ok 8 - Process: sshd: running: matches expectation: [true]
ok 9 - User: sshd: exists: matches expectation: [true]
ok 10 - User: sshd: uid: matches expectation: [74]
ok 11 - User: sshd: gid: matches expectation: [74]
ok 12 - User: sshd: home: matches expectation: ["/var/empty/sshd"]
ok 13 - User: sshd: groups: matches expectation: [["sshd"]]
ok 14 - User: sshd: shell: matches expectation: ["/sbin/nologin"]
ok 15 - Port: tcp:22: listening: matches expectation: [true]
ok 16 - Port: tcp:22: ip: matches expectation: [["0.0.0.0"]]
ok 17 - Service: sshd: enabled: matches expectation: [true]
ok 18 - Service: sshd: running: matches expectation: [true]

Чтобы интегрировать Goss с Molecule, установите molecule-goss с помо
щью pip и создайте сценарий:

$ molecule init scenario -r ssh \
 --driver-name docker \
 --verifier-name goss goss

Создайте файлы YAML для Goss в подкаталоге molecule/goss/tests/ ва-
шей роли. Это один из самых быстрых и эффективных способов вне-
дрить автоматизированное тестирование в операции.

304    Глава 14. Обеспечение качества с помощью Molecule

TestInfra
При наличии дополнительных требований для нужд тестирования

можно с успехом использовать фреймворки на Python. TestInfra позво-
ляет писать модульные тесты на Python и проверять фактическое со-
стояние серверов, сконфигурированных с помощью Ansible. TestInfra
стремится стать Python-эквивалентом фреймворка ServerSpec на осно-
ве Ruby, широко используемого для тестирования систем, управляемых
с помощью Puppet.

Чтобы использовать фреймворк TestInfra в качестве верификатора,
сначала установите его:

$ pip install pytest-testinfra
и создайте сценарий:
$ molecule init scenario -r ssh \
 --driver-name docker \
 --verifier-name testinfra testinfra

Чтобы определить набор тестов TestInfra для сервера SSH, создайте
файл с именем molecule/testinfra/tests/test_default.py и добавьте в него
код из примера 14.8. После импорта библиотек он вызывает Molecule,
чтобы получить список хостов из реестра в переменную testinfra_hosts.

Каждый хост в этом списке проверяется на наличие пакета openssh-
server, службы sshd, файла с ключом хоста ed25519, а также соответству-
ющего пользователя и группы.

Пример 14.8. Файл TestInfra для тестирования SSH-сервера
import os
import testinfra.utils.ansible_runner

testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner(
 os.environ["MOLECULE_INVENTORY_FILE"]
).get_hosts("all")

def test_sshd_is_installed(host):
 sshd = host.package("openssh-server")
 assert sshd.is_installed

def test_sshd_running_and_enabled(host):
 sshd = host.service("sshd")
 assert sshd.is_running
 assert sshd.is_enabled

def test_sshd_config_file(host):
 sshd_config = host.file("/etc/ssh/ssh_host_ed25519_key.pub")
 assert sshd_config.contains("ssh-ed25519 ")
 assert sshd_config.user == "root"

Заключение    305

 assert sshd_config.group == "root"
 assert sshd_config.mode == 0o644

def test_ssh_user(host):
 assert host.user("sshd").exists

def test_ssh_group(host):
 assert host.group("ssh").exists

Нетрудно представить, какие широкие возможности проверки серве-
ров открывает поддержка Python. Для экономии времени и сил TestInfra
предлагает также готовые тесты для типичных случаев.

Заключение
Если вы активно используете Ansible, то Molecule станет отличным до-
полнением к вашему набору инструментов. Этот фреймворк помогает
разрабатывать согласованные, хорошо оформленные, легко читаемые
и понятные роли.

Глава 15
Коллекции

Коллекции – это формат распространения контента Ansible. Типичная
коллекция содержит набор связанных вариантов использования. На-
пример, коллекция cisco.ios автоматизирует управление устройствами
Cisco iOS. Коллекции контента Ansible (Ansible Content Collections), ко-
торые мы будем называть просто коллекциями до конца главы, – это
новый стандарт автоматизации распространения, обслуживания и по-
требления. Коллекции можно рассматривать как формат пакетов для
контента Ansible. Комбинируя несколько типов контента Ansible (сце-
нарии, роли, модули и плагины), коллекции значительно повышают
гибкость и масштабируемость.

Традиционно создателям модулей приходилось ждать, пока их мо-
дули будут включены в очередной выпуск Ansible, или же добавлять их
в роли, что усложняло потребление и управление. Теперь, когда проект
Ansible отделил выполняемые файлы Ansible от большей части контен-
та, новые версии Ansible могут выходить чаще и независимо от выпу-
сков коллекций.

Отправка модулей в Ansible Collections вместе с ролями и докумен-
тацией устраняет барьер для входа, благодаря чему создатели могут
выпускать свои коллекции по мере появления спроса на них и, соот-
ветственно, развертывать и автоматизировать новые функции для су-
ществующих или новых продуктов и услуг независимо от выхода новых
версий Ansible.

Создать коллекцию и опубликовать ее в Ansible Galaxy или в частном
экземпляре Automation Hub может любой желающий. Партнеры Red Hat
могут публиковать сертифицированные коллекции в репозитории Red
Hat Automation Hub, являющемся частью платформы Red Hat Ansible
Automation Platform, с выходом новой версии которой коллекции кон-
тента Ansible становятся полностью поддерживаемыми.

Установка коллекций
Коллекции можно получить на веб-сайте Ansible Galaxy и с помощью
команды ansible-galaxy. По умолчанию команда ansible-galaxy collection

Установка коллекций    307

install пытается установить коллекции с сайта https://galaxy.ansible.
com, но роли и коллекции также можно хранить в частных репозито-
риях Git:

$ ansible-galaxy collection install мое_пространство_имен.моя_коллекция

Чистосердечное признание
До сих пор для простоты Бас использовал имена модулей, состоящие из
одного слова и без учета пространств имен. Пространства имен помога-
ют различать владельцев и их коллекции. В сценариях лучше использовать
полные имена коллекций, потому что в таком случае имена модулей стано-
вятся достаточно конкретными, чтобы их можно было найти (попробуйте
поискать в Google по имени «group» вместо «ansible.builtin.group»).
Вместо использования простого имени модуля, например:

- name: create group members
 group:
 name: members

мы используем полное имя в виде пространство_имен.имя_коллекции.имя_модуля:

- name: create group members
 ansible.builtin.group:
 name: members

Для ansible.builtin это может показаться излишним, но при использовании
других коллекций очень важно избегать конфликтов имен.
Ключевое слово collections позволяет определить список коллекций, в ко-
торых роль или сценарий должны искать краткие имена модулей и дей-
ствий. В таком случае можно использовать ключевое слово collections, а
затем обращаться к модулям и плагинам действий по их кратким именам:

myrole/meta/main.yml
collections:
 - my_namespace.first_collection:version

Коллекции можно устанавливать в имеющуюся установку Ansible и перео-
пределять встроенные коллекции устанавливаемыми вами версиями.

Команде ansible-galaxy также можно передать файл requirements.yml
со списком рекомендуемых коллекций и ролей, связанных с безопас-
ностью:

$ ansible-galaxy install -r requirements.yml

По умолчанию коллекции устанавливаются «глобально» в подкаталог
в вашем домашнем каталоге:

$HOME/.ansible/collections/ansible_collections

308    Глава 15. Коллекции

Если вы решите устанавливать коллекции в другой каталог, настройте
его в параметре collections_paths в файле ansible.cfg. Каталог collections в пап-
ке с playbook.yml – одно из наиболее удобных мест в структуре проекта.

В примере 15.1 показано, как выглядит содержимое файла requirements.
yml. В нем определено два списка: для ролей и коллекций.

Пример 15.1. requirements.yml

roles:
 - src: leonallen22.ansible_role_keybase
 name: keybase
 - src: https://github.com/dockpack/base_tailscale.git
 name: tailscale
collections:
 - check_point.gaia
 - check_point.mgmt
 - cyberark.conjur
 - cyberark.pas
 - fortinet.fortios
 - ibm.isam
 - junipernetworks.junos
 - paloaltonetworks.panos
...

Вывод списка коллекций
Первое, что нужно сделать после установки коллекций, – посмотреть,
какие коллекции установлены отдельно, а какие вместе с Ansible:

$ ansible-galaxy collection list

Вы получите список, содержащий более сотни записей, – в Ansible
«батарейки поставляются в комплекте». Чтобы получить список моду-
лей, включенных в коллекцию, выполните:

$ ansible-doc -l пространство_имен.имя_коллекции

Коллекции Ansible расширяют ваши возможности. Чтобы не путаться
в многообразии коллекций, установите только ansible-core и коллекции,
которые действительно необходимы.

Использование коллекций в сценариях
Коллекции могут включать сценарии, роли, модули и плагины. Если
вы используете модули из устанавливаемых вами коллекций, то име-
ет смысл использовать в сценариях полные имена модулей: напри-
мер, вместо краткого имени модуля file лучше использовать полное имя
ansible.builtin.file. Кроме того, используя сторонние коллекции, добав-

Разработка коллекций    309

ляйте ключевое слово collections в начало сценария и объявляйте в нем
применяемые коллекции (пример 15.2).

Пример 15.2. Объявление коллекций, используемых в сценарии

- name: Collections playbook
 hosts: all
 collections:
 - our_namespace.her_collection
 tasks:
 - name: Using her module from her collection
 her_module:
 option1: value

 - name: Using her role from her collection
 import_role:
 name: her_role

 - name: Using lookup and filter plug-ins from her collection
 debug:
 msg: '{{ lookup("her_lookup", "param1") | her_filter }}'

 - name: Create directory
 become: true
 become_user: root
 ansible.builtin.file:
 path: /etc/my_software
 state: directory
 mode: '0755'
...

Коллекции позволяют расширять «язык» Ansible «новыми словами»,
и мы можем запускать ansible-core только с коллекциями, которые дей-
ствительно нужны.

Разработка коллекций
Коллекции имеют простую предсказуемую структуру. Утилита команд-
ной строки ansible-galaxy поддерживает управление коллекциями, пре-
доставляя большую часть тех же возможностей, что всегда использо-
вались для управления ролями. Например, ansible-galaxy collection init
создаст заготовку новой пользовательской коллекции :

$ ansible-galaxy collection init a_namespace.the_bundle

Если попробовать создать коллекцию с именем the_bundle в простран-
стве имен ansiblebook, то команда создаст следующее дерево каталогов:

310    Глава 15. Коллекции

ansiblebook/
└── the_bundle
 ├── README.md
 ├── docs
 ├── galaxy.yml
 ├── plugins
 │ └── README.md
 └── roles

Метаданные коллекции, что хранятся в файле galaxy.yml (при-
мер 15.3), включают ссылки на репозиторий, документацию и средство
отслеживания проблем. Параметр tags используется для поиска в https://
galaxy.ansible.com, а параметр build_ignore – для фильтрации файлов из
артефакта.

Пример 15.3. galaxy.yml

namespace: community
name: postgresql
version: 2.1.3
readme: README.md
authors:
 - Ansible PostgreSQL community
description: null
license_file: COPYING
tags:
 - database
 - postgres
 - postgresql
repository: https://github.com/ansible-collections/community.postgresql
documentation: https://docs.ansible.com/ansible/latest/collections/community/
postgresql
homepage: https://github.com/ansible-collections/community.postgresql
issues: https://github.com/ansible-collections/community.postgresql/issues
build_ignore:
 - .gitignore
 - changelogs/.plugin-cache.yaml
 - '*.tar.gz'

Полную информацию о требованиях и процессе распространения вы
найдете в руководстве разработчика по распространению коллекций
(https://oreil.ly/zo08v).

Чтобы передать свою коллекцию в общее пользование, ее можно опу-
бликовать на одном или нескольких серверах распространения, вклю-
чая Ansible Galaxy, Red Hat Automation Hub (для сертифицированных
партнеров Red Hat) и частный Automation Hub (см. главу 23).

https://oreil.ly/zo08v

Заключение    311

Коллекции распространяются в виде архивов, а не в виде исходного
кода, как роли в Ansible Galaxy (https://galaxy.ansible.com/). Для локального ис-
пользования отлично подходит формат tag.gz. Архив с коллекцией мож-
но создать такой командой:

$ ansible-galaxy collection build

Для уверенности протестируйте установку локально:

$ ansible-galaxy collection install \
 a_namespace-the_bundle-1.0.0.tar.gz \
 -p ./collections

После этого можно опубликовать коллекцию:

$ ansible-galaxy collection publish path/to/a_namespace-the_bundle-1.0.0.tar.gz

Заключение
Коллекции стали большим шагом вперед в развитии проекта Ansible.
Представление проекта Ansible с «батарейками в комплекте» со вре-
менем оказалось малопригодным для сопровождения тысячами раз-
работчиков. Мы считаем, что наличие надлежащих пространств имен
и разделения обязанностей, участие поставщиков в экосистеме Red Hat
и свобода инноваций вернут доверие пользователей к Ansible в деле
автоматизации поддержки критически важных систем. Имея возмож-
ность уверенно управлять своими зависимостями – коллекциями, ро-
лями и библиотеками Python, – вы сможете уверенно автоматизиро-
вать свои процессы администрирования.

https://galaxy.ansible.com/

Глава 16
Создание образов

Создание образов с помощью Packer
Packer – это инструмент, помогающий создавать образы машин для
разных платформ из одного источника. С помощью Packer можно соз-
давать как образы виртуальных машин, так и образы контейнеров.

Dockerfile позволяет упаковать приложение в единый образ, который
можно развернуть в различных окружениях (но только на контейнерной
платформе), поэтому проект Docker использует метафору транспорти-
ровочного контейнера. Его удаленный API упрощает автоматизацию
программных систем, работающих поверх Docker, но важно помнить о
проблемах безопасности такого API.

Стандартный файл Dockerfile отлично подходит для создания про-
стых образов контейнеров. Однако при создании более сложных обра-
зов начинает остро ощущаться нехватка возможностей Ansible. К счас
тью, сценарии Ansible можно использовать как средство подготовки
описаний образов для HashiCorp Packer (https://oreil.ly/Fktch) и избавиться
от лишних сложностей.

Рабочие процессы, описанные в этой главе, могут пригодиться, если
вы решите отложить выбор места и способа запуска ваших приложе-
ний, потому что на основе единственного источника можно создавать
образы для разных облачных провайдеров и контейнерных платформ.
Кроме того, вы сможете сократить расходы на облачные вычисления за
счет комбинирования использования облачных служб и локальной раз-
работки в Vagrant VirtualBox.

Vagrant VirtualBox VM
Для начала рассмотрим создание образа RHEL 8 виртуальной машины
Vagrant/VirtualBox с помощью Packer.

Создайте образ, выполнив команду:

$ packer build rhel8.pkr.hcl

Этот файл определяет переменные для ISO-образа, используемого в
Kickstart, свойства виртуальной машины, используемой для создания

https://oreil.ly/Fktch

Vagrant VirtualBox VM    313

образа, и шаги по его наполнению (пример 16.1). Установка вариантов
Red Hat Linux основана на Kickstart: при запуске машины команда за-
грузки запрашивает конфигурацию Kickstart через HTTP и передает ее
мастеру установки Red Hat под названием Anaconda.

Пример 16.1. rhel8.pkr.hcl

variable "iso_url1" {
 type = string
 default = "file:///Users/Shared/rhel-8.4-x86_64-dvd.iso"
}
variable "iso_url2" {
 type = string
 default = "https://developers.redhat.com/content-gateway/file/rhel-8.4-x86_64-dvd.iso"
}
variable "iso_checksum" {
 type = string
 default = "sha256:48f955712454c32718dcde858dea5aca574376a1d7a4b0ed6908ac0b85597811"
}
source "virtualbox-iso" "rhel8" {
 boot_command = [
 "<tab> text inst.ks=http://{{ .HTTPIP }}:{{ .HTTPPort }}/
 ks.cfg<enter><wait>"
]
 boot_wait = "5s"
 cpus = 2
 disk_size = 65536
 gfx_controller = "vmsvga"
 gfx_efi_resolution = "1920x1080"
 gfx_vram_size = "128"
 guest_os_type = "RedHat_64"
 guest_additions_mode = "upload"
 hard_drive_interface = "sata"
 headless = true
 http_directory = "kickstart"
 iso_checksum = "${var.iso_checksum}"
 iso_urls = ["${var.iso_url1}", "${var.iso_url2}"]
 memory = 4096
 nested_virt = true
 shutdown_command = "echo 'vagrant' | sudo -S /sbin/halt -h -p"
 ssh_password = "vagrant"
 ssh_username = "root"
 ssh_wait_timeout = "10000s"
 rtc_time_base = "UTC"
 virtualbox_version_file= ".vbox_version"
 vrdp_bind_address = "0.0.0.0"
 vrdp_port_min = "5900"

314    Глава 16. Создание образов

 vrdp_port_max = "5900"
 vm_name = "RedHat-EL8"
}
build {
 sources = ["source.virtualbox-iso.rhel8"]
 provisioner "shell" {
 execute_command = "echo 'vagrant' | {{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/vagrant.sh", "scripts/cleanup.sh"]
 }
 provisioner "ansible" {
 playbook_file = "./packer-playbook.yml"
 }
 post-processors {
 post-processor "vagrant" {
 keep_input_artifact = true
 compression_level = 9
 output = "output-rhel8/rhel8.box"
 vagrantfile_template = "Vagrantfile.template"
 }
 }
}

Когда мастер Anaconda завершит работу, виртуальная машина пере
загрузится и Packer приступит к ее наполнению, запуская сценарии,
в том числе и packer-playbook.yml с помощью сценария наполнения
"ansible". Все эти действия будут выполнены на вашей машине.

Отдельные разработчики могут бесплатно зарегистрировать и управ-
лять 16 системами RHEL 8 (https://oreil.ly/Z8HUI). Поскольку все действия
выполняются на основе подписки, необходимо определить три пере-
менные окружения с логином RH_USER и паролем RH_PASS для Red Hat и не-
обязательным идентификатором пула RH_POOL (https://oreil.ly/DuyQ8). Все это
можно сделать в командной оболочке перед запуском Packer. В приме-
ре 16.2 показан сценарий, который регистрирует виртуальную машину
и устанавливает инструменты поддержки контейнеров.

Пример 16.2. packer-playbook.yml

- hosts: all:!localhost
 become: true
 gather_facts: false
 tasks:

 - name: Register RHEL 8
 redhat_subscription:
 state: present
 username: "{{ lookup('env','RH_USER') }}"

https://oreil.ly/Z8HUI
https://oreil.ly/DuyQ8

Vagrant VirtualBox VM    315

 password: "{{ lookup('env','RH_PASS') }}"
 pool_ids: "{{ lookup('env','RH_POOL') }}"
 syspurpose:
 role: "Red Hat Enterprise Server"
 usage: "Development/Test"
 service_level_agreement: "Self-Support"

 - name: Install packages
 yum:
 name: "{{ item }}"
 state: present
 loop:
 - podman
 - skopeo
...

После успешного завершения сборки можно добавить получившийся
файл как шаблон для Vagrant/VirtualBox:

$ vagrant box add --force --name RedHat-EL8 output-rhel8/rhel8.box

В примерах кода для этой главы вы найдете Vagrantfile, с помощью
которого можно запустить виртуальную машину с именем rhel8, осно-
ванную на этом шаблоне:

$ vagrant up rhel8

После запуска к ней можно подключиться с помощью Remote Desktop
с учетными данными пользователя Vagrant:

rdp://localhost:5900

Запустите Visual Studio Code, чтобы увидеть, что было установлено.

Объединение Packer и Vagrant
Для создания образов с помощью Packer имеет смысл использовать

Vagrant. В файле Vagrantfile можно определять прототипы новых функ-
ций, которые в конечном итоге будут добавлены в облачные образы.
Сценарии Ansible работают на локальной виртуальной машине на-
много быстрее, чем полный сценарий Packer, что способствует повы-
шению скорости разработки. Packer не останавливается на полпути и в
случае сбоя уничтожит все созданные им ресурсы, тогда как, используя
Vagrant, можно добавлять новые возможности поэтапно. Следующий
файл Vagrantfile запускает виртуальную машину, используя определе-
ние образа с именем "centos/7":

Vagrant.configure("2") do |config|
 config.vm.box = "centos/7"
 config.vm.box_check_update = true

316    Глава 16. Создание образов

 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end
 config.vm.graceful_halt_timeout=15
 config.ssh.insert_key = false
 config.ssh.forward_agent = true
 config.vm.provider "virtualbox" do |virtualbox|
 virtualbox.gui = false
 virtualbox.customize ["modifyvm", :id, "--memory", 2048]
 virtualbox.customize ["modifyvm", :id, "--vram", "64"]
 end
 config.vm.define :bastion do |host_config|
 host_config.vm.box = "centos/7"
 host_config.vm.hostname = "bastion"
 host_config.vm.network "private_network", ip: "192.168.56.20"
 host_config.vm.network "forwarded_port", id: 'ssh', guest: 22, host: 2220
 host_config.vm.synced_folder ".", "/vagrant", disabled: true
 host_config.vm.provider "virtualbox" do |vb|
 vb.name = "bastion"
 vb.customize ["modifyvm", :id, "--memory", 2048]
 vb.customize ["modifyvm", :id, "--vram", "64"]
 end
 end
 config.vm.provision :ansible do |ansible|
 ansible.compatibility_mode = "2.0"
 # Отключить ограничение по умолчанию для подключения ко всем серверам
 ansible.limit = "all"
 ansible.galaxy_role_file = "ansible/roles/requirements.yml"
 ansible.galaxy_roles_path = "ansible/roles"
 ansible.inventory_path = "ansible/inventories/vagrant.ini"
 ansible.playbook = "ansible/playbook.yml"
 ansible.verbose = ""
 end
end

Vagrant может автоматически настраивать многие аспекты Ansible,
но вы также можете запускать отдельные секции в сценарии, используя
теги, авторизоваться для проверки и т. д.

Облачные образы
Packer способен создавать образы виртуальных машин для всех ос-

новных облачных провайдеров (AWS EC2, Azure, Digital Ocean, GCP,
Hetzner Cloud, Oracle) и гипервизоров (OpenStack, Hyper-V, Proxmox,
VMWare, VirtualBox, QEMU). Он позволяет отложить принятие реше-
ния о развертывании приложений и предлагает универсальный ин-
терфейс.

Vagrant VirtualBox VM    317

Следующие облачные провайдеры и технологии поддерживают рабо-
ту с Ansible и Packer:

Alicloud ECS Amazon EC2 Azure CloudStack Digital Ocean

Docker Google Cloud Platform Hetzner Cloud HuaweiCloud Hyper-V

Kamatera Linode LXC LXD OpenStack

Oracle Parallels ProfitBricks Proxmox QEMU

Scaleway Vagrant VirtualBox VMware Vultr

Google Cloud Platform
Начать работу с Google Cloud Platform (GCP) очень просто. Выполните

вход (https://oreil.ly/4hLD4), создайте проект в Compute Engine и скопируйте
идентификатор проекта (имя с номером в конце). Создайте перемен-
ную окружения и присвойте ей этот идентификатор проекта:

export GCP_PROJECT_ID=myproject-332421

Выберите зону на странице настроек (https://oreil.ly/zTvzc) проекта и соз-
дайте пару переменных окружения:

export CLOUDSDK_COMPUTE_REGION=europe-west4
export CLOUDSDK_COMPUTE_ZONE=europe-west4-b

Примеры в папке ansiblebook/ch16/cloud основаны на ansible-roles в фай-
ле requirements.yml. Чтобы установить эти роли, выполните команды:

cd ansible && ansible-galaxy install -f -p roles -r roles/requirements.yml

В примере 16.3 показан файл Packer, в котором определяются пере-
менные для GCP, образ, используемый в качестве основы, имя резуль-
тирующего образа, свойства виртуальной машины, в которой будет
создаваться образ, и этапы наполнения образа дополнительным про-
граммным обеспечением. Тип машины, используемый для создания
образа, не связан с типом машины, которая будет создана из этого обра-
за. Для создания сложных образов мы используем экземпляры мощных
машин – они стоят столько же, но выполняют работу быстрее.

Пример 16.3. gcp.pkr.hcl
variable "gcp_project_id" {
 type = string
 default = "${env("GCP_PROJECT_ID")}"
 description = "Create a project and use the project-id"
}
variable "gcp_region" {
 type = string
 default = "${env("CLOUDSDK_COMPUTE_REGION")}"
 description = "https://console.cloud.google.com/compute/settings"

https://oreil.ly/4hLD4
https://oreil.ly/zTvzc

318    Глава 16. Создание образов

}
variable "gcp_zone" {
 type = string
 default = "${env("CLOUDSDK_COMPUTE_ZONE")}"
 description = "https://console.cloud.google.com/compute/settings"
}
variable "gcp_centos_image" {
 type = string
 default = "centos-7-v20211105"
 description = ""
}
variable "image" {
 type = string
 default = "centos7"
 description = "Name of the image when created"
}
source "googlecompute" "gcp_image" {
 disk_size = "30"
 image_family = "centos-7"
 image_name = "${var.image}"
 machine_type = "e2-standard-2"
 project_id = "${var.gcp_project_id}"
 region = "${var.gcp_region}"
 source_image = "${var.gcp_centos_image}"
 ssh_username = "centos"
 state_timeout = "20m"
 zone = "${var.gcp_zone}"
}
build {
 sources = ["googlecompute.gcp_image"]
 provisioner "shell" {
 execute_command = "{{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/ansible.sh"]
 }
 provisioner "ansible-local" {
 extra_arguments = ["--extra-vars \"image=${var.image}\""]
 playbook_dir = "./ansible"
 playbook_file = "ansible/packer.yml"
 }
 provisioner "shell" {
 execute_command = "{{ .Vars }} /usr/bin/sudo -S -E bash '{{ .Path }}'"
 script = "scripts/cleanup.sh"
 }
}

Первый сценарий наполнения (provisioner) "shell" устанавливает си-
стему Ansible на виртуальную машину. Затем она используется как сце-

Vagrant VirtualBox VM    319

нарий наполнения "ansible-local". Фактически в виртуальную машину
CGP выгружается весь каталог, в котором хранится файл Packer, поэто-
му будьте осторожны и не создавайте образы в том же каталоге.

Azure
Чтобы начать работу с Azure, выполните вход (https://portal.azure.com/) и

найдите свой идентификатор подписки Subscription ID. Создайте пере-
менную окружения с его значением:

export ARM_SUBSCRIPTION_ID=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Прежде чем создавать образы, добавьте сначала группу ресурсов и
учетную запись хранилища. Вам также придется выбрать место (https://
oreil.ly/UOXYU) для их размещения.

В примере 16.4 показан соответствующий файл Packer для создания
образа виртуальной машины. Он аналогичен файлу для GCP, но требует
больше деталей и других переменных.

Пример 16.4. azure.pkr.hcl

variable "arm_subscription_id" {
 type = string
 default = "${env("ARM_SUBSCRIPTION_ID")}"
 description = "https://www.packer.io/docs/builders/azure/arm"
}
variable "arm_location" {
 type = string
 default = "westeurope"
 description = "https://azure.microsoft.com/en-us/global-infrastructure/geographies/"
}
variable "arm_resource_group" {
 type = string
 default = "${env("ARM_RESOURCE_GROUP")}"
 description = "make arm-resourcegroup in Makefile"
}
variable "arm_storage_account" {
 type = string
 default = "${env("ARM_STORAGE_ACCOUNT")}"
 description = "make arm-storageaccount in Makefile"
}
variable "image" {
 type = string
 default = "centos7"
 description = "Name of the image when created"
}
source "azure-arm" "arm_image" {
 azure_tags = {

https://portal.azure.com/
https://oreil.ly/UOXYU
https://oreil.ly/UOXYU

320    Глава 16. Создание образов

 product = "${var.image}"
 }
 image_offer = "CentOS"
 image_publisher = "OpenLogic"
 image_sku = "7.7"
 location = "${var.arm_location}"
 managed_image_name = "${var.image}"
 managed_image_resource_group_name = "${var.arm_resource_group}"
 os_disk_size_gb = "30"
 os_type = "Linux"
 subscription_id = "${var.arm_subscription_id}"
 vm_size = "Standard_D8_v3"
}
build {
 sources = ["source.azure-arm.arm_image"]
 provisioner "shell" {
 execute_command = "{{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/ansible.sh"]
 }
 provisioner "ansible-local" {
 extra_arguments = ["--extra-vars \"image=${var.image}\""]
 playbook_dir = "./ansible"
 playbook_file = "ansible/packer.yml"
 }
 provisioner "shell" {
 execute_command = "{{ .Vars }} /usr/bin/sudo -S -E bash '{{ .Path }}'"
 script = "scripts/cleanup.sh"
 }
 provisioner "shell" {
 execute_command = "chmod +x {{ .Path }}; {{ .Vars }} sudo -E sh '{{ .Path }}'"
 inline = [
 "/usr/sbin/waagent -force -deprovision+user",
 "sync"
]
 inline_shebang = "/bin/sh -x"
 }
}

В отличие от CGP здесь по завершении наполнения запускается waa-
gent. Эта утилита удаляет учетные записи пользователей и ключи SSH из
виртуальной машины, чтобы полученный образ можно было безопасно
использовать в новом экземпляре виртуальной машины.

Amazon EC2
Чтобы начать работу с EC2 – предложением Amazon инфраструктуры

как услуги (Infrastructure as a Service, IaaS), – выполните вход (https://aws.

https://aws.amazon.com/console

Vagrant VirtualBox VM    321

amazon.com/console) и настройте управление идентификацией и доступом
(Identity and Access Management). Мы предполагаем, что вы знаете, как
использовать переменные окружения AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_
KEY и AWS_REGION. Более подробную информацию об облачной инфраструк-
туре Amazon вы найдете в следующей главе.

Файл Packer для Amazon EC2 (пример 16.5) похож на файлы для дру-
гих поставщиков облачных услуг, но имеет важное отличие – базовый
образ для конкретного региона должен быть указан в переменной aws_
centos_image.

Пример 16.5. aws.pkr.hcl

variable "aws_region" {
 type = string
 default = "${env("AWS_REGION")}"
 description = "https://docs.aws.amazon.com/general/latest/gr/rande.html"
}

variable "aws_centos_image" {
 type = string
 default = "ami-0e8286b71b81c3cc1"
 description = "https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html"
}

variable "image" {
 type = string
 default = "centos7"
 description = "Name of the image when created"
}

locals { timestamp = regex_replace(timestamp(), "[- TZ:]", "") }

source "amazon-ebs" "aws_image" {
 ami_name = "${var.image}-${local.timestamp}"
 instance_type = "t2.micro"
 region = "${var.aws_region}"
 source_ami = "${var.aws_centos_image}"
 ssh_username = "centos"
 tags = {
 Name = "${var.image}"
 }
}

build {
 sources = ["source.amazon-ebs.aws_image"]
 provisioner "shell" {
 execute_command = "{{ .Vars }} sudo -S -E bash '{{ .Path }}'"

https://aws.amazon.com/console

322    Глава 16. Создание образов

 scripts = ["scripts/ansible.sh"]
 }

 provisioner "ansible-local" {
 extra_arguments = ["--extra-vars \"image=${var.image}\""]
 playbook_dir = "./ansible"
 playbook_file = "ansible/playbook.yml"
 }

 provisioner "shell" {
 execute_command = "{{ .Vars }} /usr/bin/sudo -S -E bash '{{ .Path }}'"
 script = "scripts/cleanup.sh"
 }

}

Сценарий Ansible
Образы основаны на CentOS 7 – известном дистрибутиве, который

можно использовать как хост-бастион или как VPN:

- hosts: all:127.0.0.1
 gather_facts: true
 become: true
 vars:
 net_allow:
 - '10.1.0.0/16'
 - '192.168.56.0/24'
 roles:
 - {role: common, tags: common}
 - {role: epel, tags: epel}
 - {role: ansible-auditd, tags: auditd}
 - {role: nettime, tags: nettime}
 - {role: rsyslog, tags: syslog}
 - {role: crontab, tags: crontab}
 - {role: keybase, tags: keybase}
 - {role: gpg_agent, tags: gpg}
 - {role: tailscale, tags: tailscale}
...

Виртуальные машины в облаке должны быть защищены, поэтому в
сценарии запускается пара ролей для настройки безопасности, аудита и
синхронизации времени. Затем настраиваются параметры SSH и уста-
навливается дополнительное программное обеспечение для шифрова-
ния и поддержки VPN.

Образ Docker: GCC 11    323

Образ Docker: GCC 11
В завершение этой главы мы покажем пример применения Packer для
создания сложного образа контейнера, включающего GCC. GCC – это
компилятор, который используется для сборки ядра Linux и системного
программного обеспечения. Практически все дистрибутивы Linux по-
ставляются вместе с компилятором GCC, что позволяет вам компили-
ровать исходный код на C/C++. GCC постоянно развивается, и более но-
вые версии компилятора обычно создают более быстрые выполняемые
файлы из того же исходного кода благодаря достижениям в технологии
оптимизации. Проще говоря, если для вас важна высокая скорость вы-
полнения программ, используйте самую свежую версию компилятора;
и если необходимо, то скомпилируйте GCC 11 самостоятельно, потому
что эта версия включена еще не во все дистрибутивы.

Чтобы скомпилировать GCC и использовать его для программирова-
ния на C++ в CentOS/RHEL 7, необходимо дополнительно установить не-
которые пакеты, инструменты и библиотеки. Например, Boost – широко
известный набор библиотек для программирования на C++; CMake –
инструмент сборки. Набор инструментов разработчика Red Hat (Red
Hat Developer Toolset, DTS) включает множество других инструментов,
необходимых разработчикам.

Предположим, вы решили настроить версии и параметры в сценарии
Ansible, которому требуются другие роли (Бас опубликовал их в Ansible
Galaxy). Вы можете определить эти требования в файле requirements.yml
в каталоге с именем roles:

- src: dockpack.base_gcc
 name: base_gcc
 version: '1.3.2'
- src: dockpack.compile_gcc
 name: compile_gcc
 version: 'v1.0.5'
- src: dockpack.base_cmake
 name: base_cmake
 version: '1.3.1'
- src: dockpack.base_boost
 name: base_boost
 version: '2.1.9'
- src: dockpack.base_python
 name: base_python
 version: 'v1.1.2'

Сценарий определяет переменные и задает порядок установки (при-
мер 16.6). Чтобы скомпилировать исходный код GCC 11, нужен компи-
лятор GCC. Возникает своеобразная проблема курицы и яйца. Мы уста-

324    Глава 16. Создание образов

новим Developer Toolset 10 из Software Collections (https://oreil.ly/6EzPZ) для
CentOS 7, чтобы получить последнюю версию GCC, затем установим
Python и CMake и после этого скомпилируем GCC. Скомпилировав GCC,
мы сможем с его помощью скомпилировать Boost.

Пример 16.6. докер-playbook.yml

- hosts: all:!localhost
 gather_facts: true
 vars:
 # Устанавливать набор ПО Software Collections?
 collections_enabled: true
 # Версия Developer Toolset, которая используется для компиляции
 DTSVER: 10
 # Компилируемая версия компилятора C++
 GCCVER: '11.2.0'
 dependencies_url_signed: false
 # Компилируемая версия Boost
 boost_version: 1.66.0
 boost_cflags: '-fPIC -fno-rtti'
 boost_cxxflags: '-fPIC -fno-rtti'
 boost_properties: "link=static threading=multi runtime-link=shared"
 roles:
 - role: base_python
 - role: base_cmake
 - role: base_gcc
 - role: compile_gcc
 - role: base_boost
...

Поведение Packer определяется последовательностью объявлений и
команд в файле gcc.pkr.hcl (пример 16.7). Они указывают, какие плагины
использовать, как настроить каждый из этих плагинов и в каком поряд-
ке их запускать.

Пример 16.7. gcc.pkr.hcl

packer {
 required_plugins {
 docker = {
 version = ">= 0.0.7"
 source = "github.com/hashicorp/docker"
 }
 }
}
source "docker" "gcc" {
 changes = ["CMD [\"/bin/bash\"]", "ENTRYPOINT [\"\"]"]

https://oreil.ly/6EzPZ

Заключение    325

 commit = true
 image = "centos:7"
 run_command = [
 "-d",
 "-i",
 "-t",
 "--network=host",
 "--entrypoint=/bin/sh",
 "--", "{{ .Image }}"
]
}
build {
 name = "docker-gcc"
 sources = [
 "source.docker.gcc"
]
 provisioner "shell" {
 inline = ["yum -y install sudo"]
 }
 provisioner "ansible" {
 playbook_file = "./playbooks/docker-playbook.yml"
 galaxy_file = "./roles/requirements.yml"
 }
 post-processors {
 post-processor "docker-tag" {
 repository = "localhost/gcc11-centos7"
 tags = ["0.1"]
 }
 }
}

Чтобы создать образ контейнера, запустите сборку Packer:

$ packer build gcc.pkr.hcl

Имейте в виду, что сборка займет несколько часов.

Заключение
Мы знаем, что создание комплексных образов Docker с помощью фай-
лов Dockerfile может оказаться весьма сложной задачей. Packer и Ansible
позволяют четко разделить задачи и по-иному определить действия,
выполняемые нами с нашим программным обеспечением. Packer,
Vagrant и Ansible – фантастическая комбинация инструментов для соз-
дания образов, используемых в облаке или локально. Если вы работаете
в крупной организации, то с их помощью сможете создавать образы,
служащие основой для других образов.

Глава 17
Облачная инфраструктура

В Ansible есть несколько функций, значительно упрощающих работу с
общедоступными и частными облаками. Облако можно рассматривать
как многоуровневую платформу, в которой пользователь может соз-
давать ресурсы для запуска программных приложений1. Пользователи
могут динамически создавать или удалять облачную инфраструктуру,
включая вычислительные, сетевые ресурсы и ресурсы хранения, кото-
рая называется инфраструктура как услуга (Infrastructure as a Service,
IaaS).

IaaS-облако – это услуга, позволяющая пользователю создавать но-
вые виртуальные серверы. Все IaaS-облака обладают функцией само-
обслуживания, т. е. пользователь взаимодействует непосредственно
с услугой, не подавая запросов в ИТ-отдел. Большинство IaaS-облаков
предлагает пользователю три типа интерфейсов для взаимодействия
с системой:

•	 веб-интерфейс;
•	 интерфейс командной строки;
•	 REST API.

В случае с EC2 веб-интерфейс называется «управляющей
консолью AWS» (https://oreil.ly/b443M), а интерфейс командной
строки (неоригинально) – интерфейсом командной строки
AWS (https://oreil.ly/tm9Rx). Информацию о REST API можно
найти на сайте Amazon (http://amzn.to/1F7g6yA).

Для создания серверов IaaS-облака обычно используют виртуальные
машины, хотя вообще для создания такого облака можно использовать
физические, выделенные серверы (т. е. пользователи будут работать
непосредственно с аппаратным обеспечением вместо виртуальных ма-
шин) или контейнеры.
1	 Национальный институт стандартов и технологий (National Institute of Standards and Technology,

NIST) дал отличное определение облачных вычислений в своем документе «The NIST Definition
of Cloud Computing» (https://oreil.ly/Y1hnY).

https://oreil.ly/b443M
https://oreil.ly/tm9Rx
http://amzn.to/1F7g6yA
https://oreil.ly/Y1hnY

Облачная инфраструктура    327

Большинство IaaS-облаков позволяет вам делать большее, нежели
запускать и останавливать серверы. В частности, большинство из них
позволяет определять хранилища так, чтобы вы могли подключать и от-
ключать диски от своих серверов. Хранилища этого типа обычно назы-
ваются блочными хранилищами. Они также предоставляют возможность
определить свою топологию сети, описывающую соединения между ва-
шими серверами, а еще задать правила брандмауэра, ограничивающего
доступ к ним.

Следующий уровень в облаке включает конкретные инновации, раз-
работанные поставщиками облачных услуг, и среды выполнения при-
ложений, такие как кластеры контейнеров, серверы приложений, бес-
серверные окружения, операционные системы и базы данных. Этот
уровень называется платформа как услуга (Platform as a Service, PaaS).
На этом уровне вы управляете своими приложениями и данными,
а платформа – всем остальным. PaaS предоставляет свои возможности,
являющиеся предметом конкуренции среди поставщиков облачных
услуг, тем более что конкуренция за экономическую эффективность
в IaaS – это гонка на выживание. Однако наибольший интерес пред-
ставляет поддержка контейнерной платформы Kubernetes, имеющаяся
в любом облаке.

Любое приложение, работающее в облаке, имеет много уровней, но
если клиентам облачной услуги виден только один из них, то это – про-
граммное обеспечение как услуга (Software as a Service, SaaS). Клиенты
просто используют программное обеспечение, ничего не зная о том, где
физически находятся серверы.

Что подразумевается под подготовкой облачной услуги?
Мы постараемся быть педантичными в определении понятия «подготовка
облачной услуги». Для начала приведем пример типичного взаимодействия
пользователя с IaaS-облаком

Пользователь
	 Мне необходимо пять новых серверов на Ubuntu 20.04, каждый из ко-

торых оснащен двумя CPU, 4 Гбайт оперативной памяти и 100 Гбайт
дисковой памяти.

Услуга
	 Запрос получен. Номер вашего обращения 432789.
Пользователь
	 Каков статус обращения 432789?
Услуга
	 Ваши серверы готовы к запуску, IP-адреса: 203.0.113.5, 203.0.113.13,

203.0.113.49, 203.0.113.124, 203.0.113.209.

328    Глава 17. Облачная инфраструктура

Пользователь
	 Я закончил работу с серверами, полученными согласно обраще-

нию 432789.
Услуга
	 Запрос получен, серверы будут удалены.

Подготовка облачной услуги – это процесс создания ресурсов, необходи-
мых для настройки и запуска программного обеспечения.
Профессиональный способ создания ресурсов в облаке – использовать его
API, называемый инфраструктура как код. Существует несколько универ-
сальных облачных API и уникальные API конкретных поставщиков, а также,
как это принято в мире программистов, имеются абстракции, позволяющие
комбинировать некоторые из этих API. С их помощью можно создать де-
кларативную модель желаемого состояния ресурсов и заставить инстру-
мент сравнивать ее с текущим состоянием и выполнять соответствующие
действия; или можно императивно запрограммировать действия, необхо-
димые для достижения желаемого состояния. В любом случае выбранный
метод должен описывать ресурсы и их свойства. При выборе императив-
ного подхода необходимо знать детали создания программного стека: сеть,
подсеть, группа безопасности, сетевой интерфейс, диск, образ виртуальной
машины, виртуальная машина. При декларативном подходе достаточно
знать только взаимозависимости. HashiCorp Terraform – это декларативный
инструмент для подготовки облачной услуги, тогда как система Ansible име-
ет более императивный характер: она может определять состояние идем-
потентным способом. Различия между этими двумя методами становятся
особенно очевидными, когда возникает потребность изменить инфраструк-
туру, а также когда инфраструктура изменяет состояние с помощью других
инструментов подготовки.
Насколько просто подготовить другую версию инфраструктуры? Модули
Ansible не обязательно должны быть обратимыми, но, приложив некоторые
усилия, мы можем сделать наши сценарии Ansible идемпотентными и обра-
тимыми, использовав переменную с желаемым состоянием, позволяющей
удалять ресурсы:

state: "{{ desired_state }}"

Но даже имея реализацию шаблона отмены/повтора, в системе Ansible
нет состония, которое можно было бы использовать для планирования из-
менений, как это делает Terraform. Реестры Ansible могут иметь версии с
идемпотентными сценариями подготовки желаемого состояния с аналогич-
ным объемом кода из-за длины описаний свойств объекта. Но объем кода
Ansible увеличивается, когда для внесения изменений необходимо запро-
сить состояние инфраструктуры.

В состав Ansible входят модули поддержки для многих других облач-
ных служб, включая Microsoft Azure, Alibaba, Cloudscale, Digital Ocean,
Google Compute Engine, Hetzner, OracleCloud, IBM Cloud, Rackspace и

Облачная инфраструктура    329

Vultr, а также частных облаков, созданных с использованием oVirt,
OpenStack, CloudStack, Proxmox и VMWare vSphere.

После установки Ansible большинство возможностей становится до-
ступно в виде связанных коллекций, причем не самых последних вер-
сий. При использовании облачной службы на постоянной основе име-
ет смысл установить для нее более свежую версию коллекции. Если не
найдете своего поставщика облачных услуг в табл. 17.1, то загляните в
документацию для коллекции community.general (https://oreil.ly/HHKMk) –
она реализует большое количество функциональных возможностей.
В общем случае если поставщик еще не опубликовал коллекцию для
Ansible, то установите библиотеку Python для выбранного вами облака.

Таблица 17.1. Коллекции поддержки облачных служб и библиотеки Python

Облако Коллекция Библиотека
для Python

Amazon Web Services (https://oreil.ly/1T1Rp) amazon.aws boto3

Alibaba Cloud Compute Services (https://oreil.ly/9YoAD) footmark

Cloudscale.ch (https://oreil.ly/k3iCE) cloudscale_ch.cloud

CloudStack (https://oreil.ly/AdPO8) ngine_io.cloudstack cs

Digital Ocean (https://oreil.ly/Nhbkq) community.
digitalocean

Google Cloud (https://oreil.ly/TqTn9) google.cloud google-auth
requests

Hetzner Cloud (https://oreil.ly/bh4Pw) hetzner.hcloud hcloud-python

IBM Cloud (https://oreil.ly/R11XU) ibm.cloudcollection

Microsoft Azure (https://oreil.ly/B4nmQ) azure.azcollection ansible[azure]

Openstack (https://oreil.ly/VGkRE) openstack.cloud

Oracle Cloud Infrastructure (https://oreil.ly/Si7nX) oracle.oci oci

Ovirt (https://www.ovirt.org/) ovirt.ovirt

Packet.net (https://oreil.ly/8PYcX) packet-python

Rackspace (https://oreil.ly/ycnze) openstack.cloud

Scaleway (https://oreil.ly/Yf8Of) community.general

Vultr (https://www.vultr.com/) ngine_io.vultr

В Ansible есть более сотни модулей, имеющих отношение
к EC2 и другим возможностям, предлагаемым Amazon Web
Services (AWS). Однако в книге не так много места, чтобы
охватить все эти возможности, поэтому мы сосредоточимся
лишь на самых основных.

https://oreil.ly/HHKMk
https://oreil.ly/1T1Rp
https://oreil.ly/9YoAD
https://oreil.ly/k3iCE
https://oreil.ly/AdPO8
https://oreil.ly/Nhbkq
https://oreil.ly/TqTn9
https://oreil.ly/bh4Pw
https://oreil.ly/R11XU
https://oreil.ly/B4nmQ
https://oreil.ly/VGkRE
https://oreil.ly/Si7nX
https://www.ovirt.org/
https://oreil.ly/8PYcX
https://oreil.ly/ycnze
https://oreil.ly/Yf8Of
https://www.vultr.com/

330    Глава 17. Облачная инфраструктура

Amazon EC2
В этой главе основное внимание уделяется Amazon Elastic Compute Cloud
(EC2), потому что это самая популярная облачная служба. Однако многие
понятия, описываемые здесь, применимы и к другим облакам, поддержива-
емым в Ansible. В Ansible есть два механизма поддержки EC2:

•	 плагин динамического реестра (динамической инвентаризации) для
автоматического заполнения реестра, избавляющий от необходимости
вручную составлять список серверов;

•	 модули, выполняющие действия в EC2, такие как создание новых сер-
веров.

В этой главе мы рассмотрим оба механизма: и плагин динамической инвен-
таризации EC2, и модули поддержки EC2.

Терминология
В EC2 используется множество разных понятий. Мы планируем пояс-
нять их по мере их появления в тексте, однако три из них хотелось бы
объяснить заранее: экземпляр, образ машины Amazon (Amazon Machine
Image) и теги.

Экземпляр
В документации EC2 термин экземпляр используется для обозначе-

ния виртуальной машины, и мы будем придерживаться этой термино-
логии в данной главе. Имейте в виду, что с точки зрения Ansible экзем-
пляр EC2 – это хост.

В документации EC2 (http://amzn.to/1Fw5S8l) термины создание экземпляра
(creating instance), запуск экземпляра (launching instance) и выполнение
экземпляра (running instance) взаимозаменяемы и описывают процесс
запуска нового экземпляра. Однако термин пуск экземпляра (starting
instance) означает нечто иное – пуск экземпляра, который ранее был
приостановлен.

Образ машины Amazon
Образ машины Amazon (Amazon Machine Image, AMI) – это образ вир-

туальной машины с файловой системой, в которую установлена опера-
ционная система. Создавая экземпляр в EC2, вы выбираете операцион-
ную систему для своего экземпляра, указывая образ AMI, который EC2
будет использовать для создания экземпляра.

Каждый образ AMI имеет строковый идентификатор, называемый
идентификатором AMI (AMI ID). Он начинается с префикса ami-, за кото-

http://amzn.to/1Fw5S8l

Учетные данные пользователя    331

рым следуют шестнадцатеричные символы, например ami-1234567890abc-
def0. До января 2016 года идентификаторы, назначаемые вновь создан-
ным образам AMI, включали восемь символов после дефиса (например,
ami-1a2b3c4d). В период с января 2016 года по июнь 2018 года в Amazon
прошел процесс изменения идентификаторов всех этих типов ресурсов,
и теперь после дефиса в идентификаторах используется 17 символов. В
зависимости от времени создания учетной записи у вас могут иметься
ресурсы с короткими идентификаторами, но все новые ресурсы этих
типов будут получать более длинные идентификаторы.

Теги
EC2 позволяет аннотировать экземпляры (и другие объекты, такие

как образы AMI, тома и группы безопасности) с помощью настраивае-
мых метаданных, которые называются тегами. Теги – это просто пары
строк ключ/значение. Например, мы могли бы аннотировать экземпляр
со следующими тегами:

Name=Staging database
env=staging
type=database

Если вы когда-либо давали своему экземпляру EC2 имя в консоли
управления AWS, то наверняка использовали теги, даже не подозревая
об этом. EC2 реализует имена экземпляров как теги; ключ – Name, а зна-
чение – любое имя, которое вы дали экземпляру. Кроме этого, в теге Name
нет ничего особенного, и вы также можете настроить консоль управле-
ния для отображения значений других тегов.

Теги не обязательно должны быть уникальными, поэтому можно со-
здать сотню экземпляров с одним и тем же тегом. Поскольку модули под-
держки Ansible EC2 часто используют теги для идентификации ресурсов
и реализации идемпотентности, они будут упоминаться в этой главе не-
сколько раз.

Старайтесь присваивать всем ресурсам в EC2 осмысленные
теги, потому что они играют роль своеобразной документа-
ции.

Учетные данные пользователя
Выполняя запросы к Amazon EC2, необходимо указывать учетные дан-
ные. Перед использованием веб-консоли Amazon вы регистрируетесь
и вводите свои логин и пароль для доступа. Однако все компоненты

332    Глава 17. Облачная инфраструктура

Ansible, взаимодействующие с EC2, используют программный интер-
фейс EC2 API. Этот программный интерфейс не предусматривает ис-
пользования имени пользователя и пароля. Вместо этого используются
две строки – идентификатор ключа доступа (access key ID) и секретный
ключ доступа (secret access key).

Обычно эти строки выглядят так:

•	 идентификатор ключа доступа: AKIAIOSFODNN7EXAMPLE;
•	 секретный ключ доступа: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY.

Получить эти учетные данные можно в службе идентификации и
управления доступом (Identity and Access Management, IAM). С ее помо
щью можно создать нескольких пользователей IAM с разными приви-
легиями. После создания пользователя для него можно сгенерировать
идентификатор ключа и секретный ключ доступа.

Бас рекомендует хранить идентификатор ключа доступа
и секретный ключ доступа в переменных окружения AWS_
ACCESS_KEY_ID и AWS_SECRET_ACCESS_KEY , потому что это позволяет
использовать модули EC2 и плагины инвентаризации без со-
хранения учетных данных в файлах Ansible.
Бас помещает их в файл с именем .envrc, применяя шифрова-
ние с помощью ansible-vault. Этот файл загружается в момент
запуска сеанса. Бас пользует Zsh, поэтому определяет пере-
менные в файле ~/.zshrc. Если вы пользуетесь Bash, то помес
тите их в файл ~/.bash_profile. Если вы используете другую
командную оболочку, отличную от Bash или Zsh, то, возмож-
но, вы уже знаете, какой файл использовать для определения
этих переменных окружения:

export ANSIBLE_VAULT_PASSWORD_FILE =~/.apw_exe
$(ansible-vault view ~/.ec2.rc)

ANSIBLE_VAULT_PASSWORD_FILE – это выполняемый файл, с помо
щью которого расшифровывается еще один файл с паролем.
Бас использует GNU Privacy Guard (GPG), вариант PGP с откры-
тым исходным кодом:

#!/bin/sh
exec gpg -q -d ${HOME}/vault_pw.gpg

GPG гарантирует хранение конфиденциальных данных в за-
шифрованном виде: другими словами, пароли к хранилищу
нигде в системе не будут храниться в открытом виде. Агент
GPG избавляет от необходимости постоянно вводить пароль.

При вызове модулей поддержки EC2 эти строки можно передать как
аргументы. Для плагина динамической инвентаризации учетные дан-

Необходимое условие: библиотека Boto3 для Python    333

ные можно определить в файле aws_ec2.yml (обсуждается в следующем
разделе). Однако модули EC2 и плагин динамической инвентаризации
позволяют передавать учетные данные в переменных окружения. Так-
же можно использовать IAM-роли (https://oreil.ly/2oll2), если ваша управля-
ющая машина сама является экземпляром Amazon EC2.

Переменные окружения
Передавать учетные данные EC2 в модули Ansible можно не только

через аргументы, но и через переменные окружения. В примере 17.1
показано, как определить такие переменные.

Пример 17.1. Определение переменных окружения с учетными данными EC2

Не забудьте заменить эти значения фактическими учетными данными!
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJatrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_DEFAULT_REGION=us-west-2

После настройки переменных окружения с учетными данными мож-
но запускать модули EC2 Ansible на управляющей машине, а также ис-
пользовать плагины инвентаризации.

Файлы конфигурации
В качестве небезопасной альтернативы переменным окружения

можно использовать конфигурационный файл. Как обсуждается в сле-
дующем разделе, Ansible использует библиотеку Python Boto3 для под-
держки соглашений Boto3 о хранении учетных данных в файле конфи-
гурации Boto. Мы не будем рассматривать этот формат здесь, поэтому
за дополнительной информацией обращайтесь к документации по
Boto3 (https://oreil.ly/FtqeK).

Необходимое условие: библиотека Boto3 для Python
Для использования поддержки EC2 в Ansible необходимо установить на
управляющей машине библиотеку Boto3 для Python как системный па-
кет. Для этого выполните следующую команду1:

python3 -m venv --system-site-packages /usr/local
source /usr/local/bin/activate
(local) # pip3 install boto3

Если у вас имеются работающие экземпляры EC2, попробуйте прове-
рить правильность установки Boto3 и корректность учетных данных с
помощью командной строки Python, как показано в примере 17.2.
1	 Для установки пакета может потребоваться использовать команду sudo или активировать вир-

туальное окружение, в зависимости от того, как была установлена система Ansible.

https://oreil.ly/2oll2
https://oreil.ly/FtqeK

334    Глава 17. Облачная инфраструктура

Пример 17.2. Тестирование Boto3 и учетных данных

$ python3
Python 3.6.8 (default, Sep 9 2021, 07:49:02)
[GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto3
>>> ec2 = boto3.client("ec2")
>>> regions = [region["RegionName"] for region in ec2.describe_regions()["Regions"]]
>>> for r in regions:
... print(f" - {r}")
...
 - eu-north-1
 - ap-south-1
 - eu-west-3
 - eu-west-2
 - eu-west-1
 - ap-northeast-3
 - ap-northeast-2
 - ap-northeast-1
 - sa-east-1
 - ca-central-1
 - ap-southeast-1
 - ap-southeast-2
 - eu-central-1
 - us-east-1
 - us-east-2
 - us-west-1
 - us-west-2
>>>

Исследуя модули, входящие в состав Ansible, можно наткнуться на
устаревшие модули, требующие библиотеку Boto для Python 2, например
модуль ec2, поддерживаемый командой Ansible Core Team (не Amazon):

fatal: [localhost]: FAILED! => changed=false
 msg: boto required for this module

В таких случаях следует проверить сценарий Ansible и убедиться, что
в нем используются полные имена модулей с префиксом amazon.aws.

Динамическая инвентаризация
При работе с северами в EC2 у вас едва ли появится желание поддержи-
вать свою копию реестра Ansible, поскольку она будет устаревать по мере
появления новых серверов и удаления старых. Гораздо проще отслежи-
вать серверы EC2, используя плагин динамической инвентаризации, по-
зволяющий получить информацию о хостах непосредственно из EC2.

Динамическая инвентаризация    335

Этот плагин является частью коллекции amazon.aws (версия 2.2.0 [https://
oreil.ly/OpS3x]). Возможно, у вас уже установлена эта коллекция, если вы
установили пакет Ansible. Чтобы проверить, какая версия установлена,
выполните команду:

$ ansible-galaxy collection list|grep amazon.aws

А чтобы установить последнюю версию коллекции – команду:

$ ansible-galaxy collection install amazon.aws

Раньше у нас был файл playbooks/inventory/hosts, который играл роль
реестра. Теперь мы будем использовать каталог playbooks/inventory и
поместим в него файл aws_ec2.yml.

В примере 17.3 показано, как организовать динамическую инвента-
ризацию.

Пример 17.3. Динамическая инвентаризация EC2

Минимальный пример использования переменных окружения
Извлекает все хосты в eu-central-1
plugin: amazon.aws.aws_ec2
regions:
 - eu-north-1
 - ap-south-1
 - eu-west-1
 - ap-northeast-1
 - sa-east-1
 - ca-central-1
 - ap-southeast-1
 - eu-central-1
 - us-east-1
 - us-west-1
Игнорировать ошибки 403
strict_permissions: false
...

Если вы определили переменные окружения, как описывалось в пре-
дыдущем разделе, у вас должно получиться проверить работоспособ-
ность сценария:

$ ansible-inventory --list|jq -r .aws_ec2

Сценарий должен вывести информацию о ваших экземплярах EC2,
как показано ниже (конкретное содержимое списка у вас будет отли-
чаться):

{
 "hosts": [

https://oreil.ly/OpS3x
https://oreil.ly/OpS3x

336    Глава 17. Облачная инфраструктура

 "ec2-203-0-113-75.eu-central-1.compute.amazonaws.com"
]
}

Кеширование реестра
Когда Ansible использует плагин динамической инвентаризации EC2,

он (плагин) должен послать запросы одной или нескольким конечным
точкам EC2 для получения информации. Поскольку все это требует вре-
мени, при первом запуске плагин кеширует информацию локально, а
при последующих вызовах использует кешированные данные, пока не
истечет время действия кеша.

Такое поведение можно изменить, отредактировав параметры на-
стройки в конфигурационном файле ansible.cfg. По умолчанию время
действия кеша составляет 300 с (5 мин). Если кеш должен сохраняться в
течение часа, то установите значение, равное 3600, как показано в при-
мере 17.4.

Пример 17.4. ansible.cfg

[defaults]
fact_caching = jsonfile
fact_caching_connection = /tmp/ansible_fact_cache
fact_caching_timeout = 3600

[inventory]
cache = true
cache_plugin = jsonfile
cache_timeout = 3600

С такими настройками в течение следующего часа реестр будет из-
влекаться быстрее. Ansible кеширует реестр в кеше фактов. Чтобы убе-
диться, что кеш создан, выполните команду:

$ ls /tmp/ansible_fact_cache/
ansible_inventory_amazon.aws.aws_ec2_6b737s_3206c

При создании или удалении экземпляров плагин динамиче-
ской инвентаризации EC2 не будет отражать эти изменения,
кроме случаев, когда срок действия кеша истек или кеш был
обновлен принудительно.

Другие параметры настройки
Файл aws_ec2.yml содержит несколько параметров, управляющих по-

ведением плагина динамической инвентаризации. Поскольку сам файл

Определение динамических групп с помощью тегов    337

снабжен подробными комментариями (https://oreil.ly/FGx2h), мы не будем
рассказывать об этих параметрах в деталях.

Определение динамических групп с помощью тегов
Напомним, что плагин динамической инвентаризации создает группы
на основании таких данных, как тип экземпляра, группа безопасности,
пара ключей и теги. Теги в EC2 являются наиболее удобным способом
создания групп, поскольку их можно определить каким угодно спосо-
бом.

При помощи плагина инвентаризации можно определить дополни-
тельные метаданные для реестра, возвращаемого AWS. Например, мож-
но использовать keyed_groups для создания групп согласно тегам экзем-
пляров:

plugin: aws_ec2
keyed_groups:
 - prefix: tag
 key: tags

Ansible автоматически создаст группу с именем tag_type_web, содержа-
щую все серверы с тегом type=web.

EC2 позволяет присваивать экземплярам по нескольку тегов. Напри-
мер, при наличии отдельных окружений для тестирования и эксплуата-
ции можно присвоить промышленным веб-серверам тег:

env=production
type=web

После этого на промышленные машины можно ссылаться с помощью
tag_env_production, а на веб-серверы – с помощью tag_type_web. При необ-
ходимости сослаться на промышленные веб-серверы можно использо-
вать перекрестный синтаксис Ansible:

hosts: tag_env_production:&tag_type_web

Присваивание тегов имеющимся ресурсам
В идеальном случае присваивание тегов экземплярам EC2 происхо-

дит в момент их создания. Однако если Ansible устанавливается для
управления уже существующими экземплярами EC2, у вас наверняка
будет иметься некоторое их количество, которым было бы желательно
присвоить теги. В Ansible имеется модуль ec2_tag, позволяющий присво-
ить теги имеющимся экземплярам.

Например, чтобы присвоить экземплярам теги env=prodution и type=web,
можно использовать простой сценарий, представленный в приме-
ре 17.5.

https://oreil.ly/FGx2h

338    Глава 17. Облачная инфраструктура

Пример 17.5. Присваивание тегов EC2 существующим экземплярам

- name: Add tags to existing instances
 hosts: localhost
 vars:
 web_production:
 - i-1234567890abcdef0
 - i-1234567890abcdef1
 web_staging:
 - i-abcdef01234567890
 - i-33333333333333333
 tasks:
 - name: Tag production webservers
 ec2_tag:
 resource: "{{ item }}"
 region: "{{ lookup('env','AWS_REGION') }}"
 args:
 tags: {type: web, env: production}
 loop: "{{ web_production }}"

 - name: Tag staging webservers
 ec2_tag:
 resource: "{{ item }}"
 region: "{{ lookup('env','AWS_REGION') }}"
 args:
 tags: {type: web, env: staging}
 loop: "{{ web_staging }}"
...

В этом примере используется синтаксис YAML встраивания слова-
рей, когда теги ({ type: web, env: production}) помогают сделать сцена-
рий более компактным, но точно так же можно использовать обычный
синтаксис:

tags:
 type: web
 env: production

Создание более точных названий групп
Лорин не любит использовать такие имена групп, как tag_type_web. Он

предпочитает более простые имена, например web.
Чтобы изменить имя, нужно в каталог playbooks/inventory добавить но-

вый файл с информацией о группах. Это обычный файл реестра Ansible
с именем playbooks/inventory/hosts (см. пример 17.6).

Виртуальные частные облака    339

Пример 17.6. playbooks/inventory/hosts

[web:children]
tag_type_web
[tag_type_web]

После этого вы сможете обращаться к группе web в операциях Ansible.

 Плагин инвентаризации aws_ec2 поддерживает множество
других возможностей для управления реестром. Для начала
достаточно примера 17.3. Дополнительные сведения ищите в
документации по плагину aws_ec2 (https://oreil.ly/nP8px).

Виртуальные частные облака
Когда в 2006 году Amazon впервые запустила EC2, все экземпляры EC2
были подключены к одной плоской сети1. Каждый экземпляр EC2 по-
лучает приватный и публичный IP-адреса. В 2009 году Amazon пред-
ставила новый механизм организации виртуального частного облака
(Virtual Private Cloud, VPC). VPC позволяет пользователям управлять
способом объединения экземпляров в сеть и определять, будет она
публично доступной или изолированной. Термин VPC используется в
Amazon для описания виртуальных сетей, которые пользователи могут
создавать внутри EC2. VPC можно рассматривать как изолированную
сеть. При создании VPC указывается диапазон IP-адресов. Это должно
быть подмножество одного из диапазонов частных адресов (10.0.0.0/8,
172.16.0.0/12 или 192.168.0.0/16).

Виртуальную сеть можно разделить на подсети с диапазонами IP-
адресов, которые являются подмножествами диапазона IP-адресов
всей сети VPC. В примере 17.14 показана VPC с диапазоном IP-
адресов 10.0.0.0/16, и в ней определяются две подсети: 10.0.0.0/24 и
10.0.10/24.

Запуская экземпляр, вы назначаете ему подсеть в VPC. Подсети мож-
но настроить так, чтобы ваши экземпляры получали общедоступные
или частные IP-адреса. EC2 также позволяет определять таблицы марш-
рутизации для трафика между подсетями и создавать интернет-шлюзы
для маршрутизации трафика из подсетей в интернет.

Настройка сети – сложная тема, которая (далеко) выходит за рамки
этой книги. Для получения дополнительной информации обращайтесь
к документации Amazon EC2 по VPC (http://amzn.to/1Fw89Af).

1	 Внутренняя сеть Amazon делится на подсети, но пользователи не могут управлять распределе-
нием экземпляров по этим подсетям.

https://oreil.ly/nP8px
http://amzn.to/1Fw89Af

340    Глава 17. Облачная инфраструктура

Конфигурирование ansible.cfg
для использования с ES2
Когда Лорин использует Ansible для настройки экземпляров EC2, он до-
бавляет следующие строки в файл ansible.cfg:

[defaults]
remote_user = ec2-user
host_key_checking = False

В зависимости от используемых образов часто требуется подклю-
чаться по SSH, взяв имя конкретного пользователя, в данном случае
ec2-user, но это также может быть ubuntu или centos. Лорин также отклю-
чает проверку ключей хоста, так как заранее неизвестно, какие ключи
понадобятся для новых экземпляров1.

Запуск новых экземпляров
Модуль amazon.aws.ec2_instance позволяет запускать новые экземпляры в
EC2. Это один из наиболее сложных модулей Ansible, поскольку поддер-
живает огромное количество аргументов.

В примере 17.7 показан простой сценарий для запуска экземпляра
Ubuntu 20.04 в EC2.

Пример 17.7. Простой сценарий для создания экземпляра EC2

- name: Configure and start EC2 instance
 amazon.aws.ec2_instance:
 name: 'web1'
 image_id: 'ami-0e8286b71b81c3cc1'
 instance_type: 't2.micro'
 key_name: 'ec2key'
 region: "{{ lookup('env', 'AWS_REGION') }}"
 security_group: "{{ security_group }}"
 network:
 assign_public_ip: true
 tags:
 type: web
 env: production
 volumes:
 - device_name: /dev/sda1
 ebs:
 volume_size: 16
 delete_on_termination: true

1	 От Лорина: Получить ключи можно, послав EC2 запрос на вывод экземпляра в консоли. Но дол-
жен признаться, что я никогда не утруждал себя этим, поскольку никогда не сталкивался с не-
обходимостью извлечения ключей хоста из вывода в консоли.

Запуск новых экземпляров    341

 wait: true
 register: ec2

Давайте рассмотрим значения параметров.

•	 Параметр image_id в примере 17.7 определяет идентификатор об-
раза машины Amazon (AMI ID), который нужно указывать всегда.
Как уже говорилось выше, образ – это, по сути, файловая система,
содержащая установленную операционную систему. Использо-
ванный в примере идентификатор ami-0e8286b71b81c3cc1 относится
к образу с установленной 64-битной версией CentOS 7.

•	 Параметр instance_type описывает количество ядер CPU, объем па-
мяти и хранилища, которыми будет располагать экземпляр. EC2
не позволяет устанавливать произвольные комбинации коли-
чества ядер, объема памяти и хранилища. Вместо этого Amazon
определяет набор типов экземпляров1. В примере 17.7 использу-
ется тип экземпляра t2.micro. Это 64-битный экземпляр с одним
процессором, 1 Гбайт оперативной памяти и хранилищем на ос-
нове EBS (подробнее об этом чуть ниже).

•	 Параметр key_name ссылается на пару ключей SSH. Amazon исполь-
зует пары ключей SSH для предоставления доступа к их серверам.
До запуска первого сервера вам необходимо либо создать новую
пару SSH-ключей, либо выгрузить открытый ключ из пары, со-
зданной заранее. В любом случае вы должны дать имя паре клю-
чей SSH.

•	 Параметр region определяет географическое местоположение цен-
тра обработки данных, где будет запущен экземпляр. В этом при-
мере мы используем значение переменной окружения AWS_REGION.

•	 Параметр security_group определяет список групп безопасности –
правил брандмауэра, связанных с экземпляром. Эти группы
безопасности определяют, какие типы входящих и исходящих
соединений разрешены. Например, веб-серверу разрешено про-
слушивать TCP-порты 80 и 443, а системе Ansible разрешено под-
ключаться по SSH через TCP-порт 22.

	 В разделе network мы указали, что нам нужен общедоступный IP-
адрес в интернете.

•	 Параметр tags связывает метаданные с экземпляром в форме те-
гов EC2 ключ/значение. В предыдущем примере были назначены
следующие теги:

tags:
 Name: ansiblebook

1	 Существует удобный (неофициальный) веб-сайт (https://oreil.ly/ztoCB), где можно найти единую
таблицу со всеми доступными типами экземпляров EC2.

https://oreil.ly/ztoCB

342    Глава 17. Облачная инфраструктура

 type: web
 env: production

Вызов модуля amazon.aws.ec2_instance из командной строки –
самый простой способ завершить экземпляр, если вы знаете
его идентификатор:

$ ansible localhost -m amazon.aws.ec2_instance -a \
'instance_id=i-01176c6682556a360' \
-a state=absent'

Пары ключей EC2
В примере 17.7 мы предположили, что Amazon уже знает о паре клю-
чей SSH с именем mykey. Давайте посмотрим, как можно использовать
Ansible для создания новых пар ключей.

Создание нового ключа
При создании новой пары ключей на основе парольной фразы Amazon

генерирует пару ключей типа ed25519 с защитой взлома методом про-
стого перебора:

$ ssh-keygen -t ed25519 -a 100 -C '' -f ~/.ssh/ec2-user

Открытый ключ сохраняется в файле ~/.ssh/ec2-user.pub. В этом файле
будет создана всего одна строка, например:

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOvcnUtQI2wd4GwfOL4RckmwTinG1Zw7ia96EpVObs9x

Выгрузка открытого ключа
Создав пару ключей SSH, вы должны выгрузить открытый ключ в

Amazon. Закрытый ключ не должен никому передаваться, также неже-
лательно передавать кому-либо открытый ключ. Это вопрос конфиден-
циальности и безопасности.

- name: Register SSH keypair
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Upload public key
 amazon.aws.ec2_key:
 name: ec2key
 key_material: "{{ item }}"
 state: present

Группы безопасности    343

 force: true
 no_log: true
 with_file:
 - ~/.ssh/ec2key.pub
...

Группы безопасности
В примере 17.7 предполагается, что группа безопасности my_security_group
уже существует. Проверить наличие групп перед их использованием
можно с помощью модуля amazon.aws.ec2_group.

Группы безопасности похожи на правила брандмауэра: они опреде-
ляют, кто и как может подключаться к машине. В примере 17.8 опреде-
ляется группа безопасности, позволяющая любому хосту в интернете
подключаться к портам 80 и 443. В этом примере также разрешается
любому хосту подключаться к порту 22, но, возможно, вы решите огра-
ничить список хостов, задав конкретные адреса. Разрешены также ис-
ходящие соединения с кем угодно в интернете по HTTP и HTTPS. Исхо-
дящие соединения нам необходимы для загрузки пакетов из интернета.
Более безопасной альтернативой было бы разрешить доступ к репози-
торию или фильтрующему прокси-серверу.

Пример 17.8. Группы безопасности

- name: Configure SSH security group
 amazon.aws.ec2_group:
 name: my_security_group
 description: SSH and Web Access
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: '0.0.0.0/0'
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 rules_egress:
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0

344    Глава 17. Облачная инфраструктура

 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0

Для тех, кто прежде не пользовался группами безопасности, поясним
назначение параметров в словаре rules (см. табл. 17.2).

Таблица 17.2. Параметры правил групп безопасности

Парметр Описание

proto Протокол IP (tcp, udp, icmp) или all, чтобы разрешить все протоколы и порты

cidr_ip Подсеть IP-адресов, разрешенных для подключения, в нотации CIDR

from_port Первый порт в списке разрешенных

to_port Последний порт в списке разрешенных

Разрешенные IP-адреса
Группы безопасности позволяют определять IP-адреса, которым раз-

решено подключаться к экземпляру. Подсеть определяется с помощью
нотации бесклассовой адресации (Classless InterDomain Routing, CIDR).
Пример подсети, описанной с помощью нотации CIDR: 203.0.113.0/241.
Эта запись означает, что первые 24 бита IP-адреса должны соответство-
вать первым 24 битам адреса 203.0.113.0. Иногда люди говорят «/24» для
обозначения размера CIDR, заканчивающегося на /24.

/24 – удобное значение, поскольку соответствует трем первым окте-
там адреса, а именно 203.0.1132. Это значит, что любой IP-адрес, начи-
нающийся с 203.0.113, находится в этой подсети, т. е. любой IP-адрес
из диапазона от 203.0.113.0 до 203.0.113.255. Однако имейте в виду, что
адреса с последним октетом 0 или 255 нельзя использовать для хостов.

Адрес 0.0.0.0/0 означает, что устанавливать соединения разрешено с
любого IP-адреса.

Порты групп безопасности
Единственное, что нам кажется странным в группах безопасности

EC2, – это нотация from_port и to_port. EC2 позволяет определять диапазон
портов, к которым разрешен доступ. Например, вот как можно указать,
что TCP-соединения разрешены с любым из портов с 5900 по 5999:

- proto: tcp
 from_port: 5900

1	 Так случилось, что этот пример соответствует особому диапазону IP-адресов TEST-NET-3, заре-
зервированному для примеров. Это example.com для IP-подсетей.

2	 Подсети /8, /16, /24 – очень хорошие примеры, поскольку расчеты в этом случае гораздо легче
выполнять, чем, скажем, в случае /17 или /23.

Получение последней версии AMI    345

 to_port: 5999
 cidr_ip: 0.0.0.0/0

Однако мы считаем такую нотацию запутывающей, поскольку сами
никогда не указываем диапазоны портов1. Вместо этого мы обычно раз-
решаем порты с номерами, не идущими подряд, такими как 80 и 443.
Вследствие этого почти в любой ситуации параметры from_port и to_port
будут одинаковыми.

Модуль amazon.aws.ec2_group имеет много других параметров. За допол-
нительной информацией обращайтесь к документации.

Получение последней версии AMI
В примере 17.7 мы явно указали CentOS AMI:

image_id: ami-0e8286b71b81c3cc1

Но такой подход не годится, если вдруг появится желание запустить
новейший образ Ubuntu 20.04. Связано это с тем, что Canonical (ком-
пания, управляющая проектом Ubuntu) часто выпускает небольшие
обновления, и для каждого нового выпуска генерируется новый образ
AMI. Если еще вчера идентификатор ami-0d527b8c289b4af7f соответствовал
новейшему выпуску Ubuntu 20.04, то завтра это может быть уже не так.

В коллекции amazon.aws имеется интересный модуль ec2_ami_info, извле-
кающий список идентификаторов образов AMI, соответствующих кри-
териям поиска, таким как имя образа или теги. Пример 17.9 демонстри-
рует, как использовать этот модуль для запуска последней 64-битной
версии Ubuntu Focal 20.04 на EBS-экземпляре с дисками SSD. Вы можете
использовать этот прием для создания экземпляра с последней версией
AMI.

Пример 17.9. Получение идентификатора AMI новейшей версии Ubuntu

- name: Find latest Ubuntu image on Amazon EC2
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Gather information on Ubuntu AMIs published by Canonical
 amazon.aws.ec2_ami_info:
 owners: 099720109477
 filters:
 name: "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-*"
 architecture: "x86_64"
 root-device-type: "ebs"

1	 Внимательные читатели наверняка заметили, что порты 5900–5999 обычно используются про-
токолом VNC управления удаленным рабочим столом – одним из немногих, для которых ука-
зание диапазона портов имеет смысл.

346    Глава 17. Облачная инфраструктура

 virtualization-type: "hvm"
 state: "available"
 register: ec2_ami_info

 - name: Sort the list of AMIs by date for the latest image
 set_fact:
 latest_ami: |
 {{ ec2_ami_info.images | sort(attribute='creation_date') | last }}
 - name: Display the latest AMI ID
 debug:
 var: latest_ami.image_id
...

В данном случае мы должны знать соглашение, используемое для
именования образов Ubuntu. В случае с Ubuntu имя образа всегда закан-
чивается отметкой времени, например: ubuntu/images/hvm-ssd/ubuntu-
focal-20.04-amd64-server-20211129. В параметре name модуля ec2_ami_info
допускается использовать шаблонный символ *. Задача регистрирует
список образов AMI, благодаря чему можно узнать, какой образ самый
свежий, отсортировав список по дате создания и взяв из него самый
последний элемент.

В каждом дистрибутиве используется своя стратегия имено-
вания образов AMI, поэтому, чтобы развернуть образ AMI с
дистрибутивом, отличным от Ubuntu, вам понадобится про-
вести некоторое исследование и определить подходящую
строку поиска.

Добавление нового экземпляра в группу
Иногда Лорин предпочитает написать единый сценарий для запуска эк-
земпляра и затем выполнять на экземпляре другие сценарии.

К сожалению, до запуска сценария хост еще не существует. Запрет ке-
ширования в сценарии динамической инвентаризации тут не поможет,
потому что Ansible вызывает его в самом начале, до создания хоста.

Для добавления экземпляра в группу можно использовать задачу, вы-
зывающую модуль add_host, как показано в примере 17.10.

Пример 17.10. Добавление экземпляра в группу
- name: Create an ubuntu instance on Amazon EC2
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Configure and start EC2 instance

Ожидание запуска сервера    347

 amazon.aws.ec2_instance:
 name: 'web1'
 image_id: "{{ latest_ami.image_id }}"
 instance_type: "{{ instance_type }}"
 key_name: "{{ key_name }}"
 security_group: "{{ security_group }}"
 network:
 assign_public_ip: true
 tags: {type: web, env: production}
 volumes:
 - device_name: /dev/sda1
 ebs:
 volume_size: 16
 delete_on_termination: true
 wait: true
 register: ec2

 - name: Add the instances to the web and production groups
 add_host:
 hostname: "{{ item.public_dns_name }}"
 groupname:
 - web
 - production
 loop: "{{ ec2.instances }}"
 - name: Configure Web Server
 hosts: web:&production
 become: true
 gather_facts: true
 remote_user: ubuntu
 roles:
 - webserver

Модуль amazon.aws.ec2_instance возвращает словарь с большим
количеством информации о запущенных экземплярах. Что-
бы прочитать документацию, выполните следующую команду
для установленной коллекции:

$ ansible-doc amazon.aws.ec2_instance

Ожидание запуска сервера
Облака IaaS, такие как EC2, требуют определенного времени для созда-
ния нового экземпляра. Это значит, что невозможно запустить сцена-
рий на экземпляре EC2 сразу после отправки запроса на его создание.
Необходимо подождать, пока этот экземпляр запустится. Также имейте

348    Глава 17. Облачная инфраструктура

в виду, что экземпляр состоит из нескольких частей, создаваемых по
очереди. Поэтому вам придется подождать, но как это организовать?

Модуль ec2 поддерживает для этого параметр wait. Если в нем пере-
дать yes, то модуль ec2 не вернет управления, пока экземпляр не перей-
дет в рабочее состояние.

Однако простой задержки в ожидании запуска экземпляра недоста-
точно, необходимо дождаться, пока экземпляр продвинется достаточно
далеко в процессе загрузки и запустит сервер SSH.

Как раз для таких случаев написан модуль wait_for. Вот как можно ис-
пользовать модули ec2 и wait_for, чтобы запустить экземпляр и дождать-
ся, когда он станет готов принимать соединения через SSH:

- name: Wait for EC2 instance to be ready
 wait_for:
 host: "{{ item.public_dns_name }}"
 port: 22
 search_regex: OpenSSH
 delay: 60
 loop: "{{ ec2.instances }}"
 register: wait

Вызов wait_for использует аргумент search_regex для поиска строки
OpenSSH после подключения к хосту. Идея состоит в том, что в ответ на
попытку установить соединение функционирующий сервер SSH вернет
строку, похожую на ту, что показана в примере 17.11.

Пример 17.11. Ответ сервера SSH, работающего в Ubuntu

SSH-2.0-OpenSSH_8.2p1 Ubuntu-4ubuntu0.3

Можно было бы с помощью модуля wait_for просто проверить до-
ступность порта 22. Однако иногда случается так, что в процессе за-
грузки сервер SSH успел открыть порт 22, но еще не готов обрабаты-
вать запросы. Здесь также определена задержка в одну минуту, потому
что для публикации имени сервера в DNS тоже требуется некоторое
время. Ожидание первоначального ответа гарантирует, что модуль
wait_for вернет управление, только когда сервер SSH будет полностью
работоспособен.

Подведение итогов
В примере 17.12 приводится сценарий, создающий экземпляр EC2 и на-
страивающий его как веб-сервер. Сценарий является идемпотентным,
т. е. его можно спокойно запускать несколько раз – он создаст новый
экземпляр, только если тот еще не был создан.

Подведение итогов    349

Пример 17.12. ec2-example.yml: законченный сценарий для создания
экземпляра EC2

- name: Provision Ubuntu Web Server on Amazon EC2
 hosts: localhost
 gather_facts: false
 vars:
 instance_type: t2.micro
 key_name: ec2key
 aws_region: "{{ lookup('env', 'AWS_REGION') }}"
 security_group: my_security_group
 tasks:
 - name: Upload public key ec2key.pub
 amazon.aws.ec2_key:
 name: "{{ key_name }}"
 key_material: "{{ item }}"
 state: present
 force: true
 no_log: true
 with_file:
 - ~/.ssh/ec2key.pub

 - name: Configure my_security_group
 amazon.aws.ec2_group:
 name: "{{ security_group }}"
 region: "{{ aws_region }}"
 description: SSH and Web Access
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: '0.0.0.0/0'
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 rules_egress:
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 - proto: tcp

350    Глава 17. Облачная инфраструктура

 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0

 - name: Gather information on Ubuntu AMIs published by Canonical
 amazon.aws.ec2_ami_info:
 region: "{{ aws_region }}"
 owners: 099720109477
 filters:
 name: "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-*"
 architecture: "x86_64"
 root-device-type: "ebs"
 virtualization-type: "hvm"
 state: "available"
 register: ec2_ami_info

 - name: Sort the list of AMIs by date for the latest image
 set_fact:
 latest_ami: |
 {{ ec2_ami_info.images | sort(attribute='creation_date') | last }}

 - name: Configure and start EC2 instance
 amazon.aws.ec2_instance:
 region: "{{ aws_region }}"
 name: 'web1'
 image_id: "{{ latest_ami.image_id }}"
 instance_type: "{{ instance_type }}"
 key_name: "{{ key_name }}"
 security_group: "{{ security_group }}"
 network:
 assign_public_ip: true
 tags:
 type: web
 env: production
 volumes:
 - device_name: /dev/sda1
 ebs:
 volume_size: 16
 delete_on_termination: true
 wait: true
 register: ec2

 - name: Wait for EC2 instance to be ready
 wait_for:
 host: "{{ item.public_dns_name }}"
 port: 22
 search_regex: OpenSSH

Создание виртуального частного облака    351

 delay: 30
 loop: "{{ ec2.instances }}"
 register: wait
 - name: Add the instances to the web and production groups
 add_host:
 hostname: "{{ item.public_dns_name }}"
 groupname:
 - web
 - production
 loop: "{{ ec2.instances }}"

 - name: Configure Web Server
 hosts: web:&production
 become: true
 gather_facts: true
 remote_user: ubuntu
 roles:
 - ssh
 - webserver
...

Определения ролей для этого примера можно найти на GitHub (https://
oreil.ly/2hAPe).

Создание виртуального частного облака
До сих пор мы запускали экземпляры в виртуальном частном облаке
(VPC) по умолчанию. Однако Ansible позволяет также создавать новые
облака VPC и запускать в них экземпляры.

В примере 17.13 показано, как создать VPC с интернет-шлюзом, дву-
мя подсетями и таблицей маршрутизации, которая управляет прохож-
дением исходящих соединений через интернет-шлюз.

Пример 17.13. create-vpc.yml: создание VPC

- name: Create a Virtual Private Cloud (VPC)
 hosts: localhost
 gather_facts: false
 vars:
 aws_region: "{{ lookup('env', 'AWS_REGION') }}"
 tasks:
 - name: Create a vpc
 amazon.aws.ec2_vpc_net:
 region: "{{ aws_region }}"
 name: "Book example"
 cidr_block: 10.0.0.0/16

https://oreil.ly/2hAPe
https://oreil.ly/2hAPe

352    Глава 17. Облачная инфраструктура

 tags:
 env: production
 register: result

 - name: Set vpc_id as fact
 set_fact:
 vpc_id: "{{ result.vpc.id }}"

 - name: Add gateway
 amazon.aws.ec2_vpc_igw:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"

 - name: Create web subnet
 amazon.aws.ec2_vpc_subnet:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 cidr: 10.0.0.0/24
 tags:
 env: production
 tier: web

 - name: Create db subnet
 amazon.aws.ec2_vpc_subnet:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 cidr: 10.0.1.0/24
 tags:
 env: production
 tier: db

 - name: Set routes
 amazon.aws.ec2_vpc_route_table:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 tags:
 purpose: permit-outbound
 subnets:
 - 10.0.0.0/24
 - 10.0.1.0/24
 routes:
 - dest: 0.0.0.0/0
 gateway_id: igw
...

Все эти команды являются идемпотентными, но каждый модуль реа-
лизует механизм контроля идемпотентности по-своему (см. табл. 17.3).

Создание виртуального частного облака    353

Таблица 17.3. Логика контроля идемпотентности в некоторых модулях поддержки VPC

Модуль Контроль идемпотентности

ec2_vpc_net Параметры name и cidr

ec2_vpc_igw Наличие интернет-шлюза

ec2_vpc_subnet Параметры vpc_id и cidr

ec2_vpc_route_table Параметры vpc_id и tags1

Если в ходе проверки идемпотентности будет обнаружено несколько
экземпляров, Ansible завершит работу модуля с признаком ошибки.

Если не указать теги в ec2_vpc_route_table, то при каждом об-
ращении к модулю будет создаваться новая таблица марш-
рутизации.

Необходимо отметить, что пример 17.12 довольно прост с точки зре-
ния настройки сети, потому что мы определили всего две подсети: одна
из них подключена к интернету, а другая – нет. Мы должны настроить
группы безопасности для маршрутизации трафика из подсети web в базу
данных и из интернета в подсеть web для организации доступа по SSH
к внутренней подсети, в которой мы находимся, и задать правила для
исходящего трафика, чтобы получить возможность устанавливать па-
кеты. В примере 17.14 показано определение таких групп безопасности.

Пример 17.14. Группы безопасности EC2

- name: Create EC2 Security Groups
 hosts: localhost
 vars:
 aws_region: "{{ lookup('env', 'AWS_REGION') }}"
 database_port: 5432
 cidrs:
 web: 10.0.0.0/24
 db: 10.0.1.0/24
 ssh: 203.0.113.0/24
 tasks:
 - name: DB security group
 amazon.aws.ec2_group:
 name: db
 region: "{{ aws_region }}"
 description: allow database access for web servers
 vpc_id: "{{ vpc_id }}"
 rules:

354    Глава 17. Облачная инфраструктура

 - proto: tcp
 from_port: "{{ database_port }}"
 to_port: "{{ database_port }}"
 cidr_ip: "{{ cidrs.web }}"

 - name: Web security group
 amazon.aws.ec2_group:
 name: web
 region: "{{ aws_region }}"
 description: allow http and https access to web servers
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0

 - name: SSH security group
 amazon.aws.ec2_group:
 name: ssh
 region: "{{ aws_region }}"
 description: allow ssh access
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: "{{ cidrs.ssh }}"

 - name: Outbound security group
 amazon.aws.ec2_group:
 name: outbound
 description: allow outbound connections to the internet
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0
...

Обратите внимание, что vpc_id должен быть кешированным фактом
или дополнительной переменной в командной строке.

Заключение    355

Динамическая инвентаризация и VPC
При использовании VPC экземпляры часто помещаются в закрытую

подсеть, не подключенную к интернету. В этом случае экземпляры не
имеют публичных IP-адресов.

В такой ситуации может потребоваться запустить Ansible в экземпля-
ре внутри VPC. Сценарий динамической инвентаризации достаточно
эффективно отличает внутренние IP-адреса экземпляров VPC, не име-
ющих публичных IP-адресов.

Заключение
Ansible поддерживает не только EC2, но и другие службы AWS. Использо-
вание Ansible с EC2 – достаточно обширная тема, чтобы ей можно было
посвятить целую книгу. На самом деле Ян Курниаван (Yan Kurniawan)
написал такую книгу: «Ansible for AWS» (Packt, 2016). После изучения
этой главы у вас должно быть достаточно знаний, чтобы без труда осво-
ить другие модули.

Глава 18
Плагины обратного вызова

Система Ansible поддерживает так называемые плагины обратного вы-
зова (callback plugins), которые могут выполнять некоторые действия в
ответ на такие события, как запуск операции или завершение задачи на
хосте. Плагины обратного вызова можно использовать, например, для
отправки сообщений Slack или для вывода записей в удаленный жур-
нал. Даже информация, которую вы видите в окне терминала во время
выполнения сценария Ansible, фактически выводится плагином обрат-
ного вызова.

Ansible поддерживает три вида плагинов обратного вызова:

•	 плагины стандартного вывода;
•	 плагины уведомлений;
•	 плагины агрегирования.

Плагины стандартного вывода управляют форматом отображения
информации на экране. Однако Ansible не различает плагины уведом-
лений и агрегирования, которые выполняют самые разные действия, не
связанные с выводом.

Плагины стандартного вывода
В каждый конкретный момент времени активным может быть только
один плагин стандартного вывода. Назначается плагин стандартного
вывода установкой параметра stdout_callback в секции defaults в файле
ansible.cfg. Например, вот как можно выбрать плагин yaml, преобразую-
щий вывод в более удобочитаемый формат:

[defaults]
stdout_callback = yaml

С помощью команды ansible-doc -t callback -l можно получить список
плагинов, доступных в установленной версии Ansible. В табл. 18.1 пере-
числены некоторые плагины стандартного вывода, которыми предпо-
читает пользоваться Бас.

Плагины стандартного вывода    357

Таблица 18.1. Плагины стандартного вывода

Имя Описание Зависимости Python

ara ARA Records Ansible ara (сервер)

debug Выводит содержимое stderr и stdout в удобочитаемом
виде

default Отображает вывод по умолчанию

dense Затирает старый вывод вместо прокрутки

json Выводит информацию в формате JSON

minimal Выводит результаты выполнения задач с минимальным
форматированием

null Не отображает выводимую информацию

oneline Действует подобно плагину minimal, но выводит
информацию в одну строку

Плагин actionable был удален в версии Ansible 2.11. Вмес
то него можно использовать плагин default с параметрами
display_skipped_hosts = false и display_ok_hosts = false.

ARA
ARA Records Ansible (ARA, еще один рекурсивный акроним) – не прос

то плагин обратного вызова. Он дает возможность сохранять все детали
выполнения команд ansible и ansible-playbook (рис. 18.1). Если все разра-
ботчики в команде используют ARA, то любой сможет увидеть вывод,
сгенерированный этим плагином!

В простейшем случае записи сохраняются в файл SQLite, но при же-
лании можно сохранять данные в любой другой базе данных, а также
просматривать их в браузере, настроив веб-сайт на Django, который об-
ращается к ARA API, или в клиенте командной строки (https://oreil.ly/RCqcF).
Установить модули ARA для версии Python, которую использует система
Ansible, можно так:

$ pip3 install --user "ara[server]"
$ export ANSIBLE_CALLBACK_PLUGINS="$(python3 -m ara.setup.callback_plugins)"
... запустите свои сценарии ...
$ ara-manage runserver

Подробности ищите в документации ARA (https://oreil.ly/1q40c).

https://oreil.ly/RCqcF
https://oreil.ly/1q40c

358    Глава 18. Плагины обратного вызова

Рис. 18.1. Запись данных из Ansible в базу данных с помощью ARA

debug
Плагин debug упрощает чтение потоков stdout и stderr задачи и может

пригодиться для отладки. При использовании плагина default чтение
вывода может оказаться сложной задачей:

TASK [Clone repository] **
fatal: [one]: FAILED! => {"changed": false, "cmd": "/usr/bin/git clone --origin
origin '' /tmp/mezzanine_example", "msg": "Cloning into '/tmp/mezzanine_example'...
\n/private/tmp/mezzanine_example/.git: Permission denied", "rc": 1, "stderr":
"Cloning into '/tmp/mezzanine_example'...\n/private/tmp/mezzanine_example/.git:
Permission denied\n", "stderr_lines": ["Cloning into '/tmp/mezzanine_example'...",
"/private/tmp/mezzanine_example/.git: Permission denied"], "stdout": "",
"stdout_lines": []}

Но благодаря дополнительному форматированию, осуществляемому
плагином debug, читать вывод намного проще:

TASK [Clone repository] **
fatal: [one]: FAILED! => {
 "changed": false,
 "cmd": "/usr/bin/git clone --origin origin '' /tmp/mezzanine_example",
 "rc": 1
}
STDERR:
Cloning into '/tmp/mezzanine_example'...
/private/tmp/mezzanine_example/.git: Permission denied
MSG:
Cloning into '/tmp/mezzanine_example'...
/private/tmp/mezzanine_example/.git: Permission denied

Человек (сервер API) (по умолчанию)

Драйверы
модели баз

данных в
Django

Обработчики
обратных вызовов

(для каждой задачи,
результата и т. д.) Отправка данных

 (с помощью клиентов
ARA API) Сохранение

в базе данныхВозврат результатов
Возврат из

обработчика

ARA
(плагин обрат-
ного вызова)

Плагины стандартного вывода    359

default
Если не настроить stdout_callback, то для отображения информации ис-

пользуется плагин default, который форматирует вывод так:

TASK [Clone repository] **
changed: [one]

dense
Плагин dense (появился в версии Ansible 2.3) всегда отображает только две

строки вывода. Он затирает предыдущие строки, не выполняя скроллинга:

PLAY 1: LOCAL
task 1: one

json
Плагин json выводит информацию в машиночитаемом формате JSON.

Он может пригодиться в случаях, когда требуется организовать обра-
ботку вывода Ansible с использованием программ. Обратите внимание,
что этот плагин не генерирует вывода, пока сценарий не завершится
целиком. Вывод в формате JSON обычно получается слишком объем-
ным, чтобы показать его здесь.

minimal
Плагин применяет минимум обработки к результатам, возвращае-

мым с событием Ansible. Например, если плагин default форматирует
вывод задачи так:

TASK [Clone repository] **
changed: [one]

то плагин minimal выведет:

one | CHANGED => {
 "after": "2c19a94be566058e4430c46b75e3ce9d17c25f56",
 "before": null,
 "changed": true
}

null
Плагин null полностью отключает вывод.

oneline
Плагин oneline напоминает плагин minimal, но выводит информацию в

одну строку (здесь пример вывода показан в нескольких строках, пото-
му что на книжной странице он не умещается в одну строку):

360    Глава 18. Плагины обратного вызова

one | CHANGED => {"after": "2c19a94be566058e4430c46b75e3ce9d17c25f56","before": ...

Плагины уведомлений и агрегирования
Другие плагины выполняют разнообразные действия, такие как запись
времени выполнения или отправка уведомлений Slack. Эти плагины
перечислены в табл. 18.2.

Таблица 18.2. Другие плагины

Имя Описание Зависимости Python

foreman Посылает уведомление в Foreman requests

jabber Посылает уведомление в Jabber xmpppy

junit Записывает данные в XML-файл в формате Junit junit_xml

log_plays Записывает в журнал результаты выполнения
сценария для каждого хоста

logentries Посылает уведомление в Logentries certifi flatdict

logstash Посылает результаты в Logstash logstash

mail Посылает электронное письмо, если выполнение
задачи завершилось с ошибкой

nrdp Посылает результаты задачи на сервер Nagios

say Озвучивает уведомление с помощью ПО
голосового синтезатора

profile_roles Создает отчет о времени выполнения для
каждой роли

profile_tasks Создает отчет о времени выполнения для
каждой задачи

slack Посылает уведомление в Slack prettytable

splunk Посылает результаты задачи в Splunk

timer Создает отчет об общем времени выполнения

В отличие от плагинов стандартного вывода другие плагины могут
действовать одновременно. Активировать плагины из этой категории
можно с помощью параметра callback_whitelist в файле ansible.cfg, пере-
числив их через запятую, например:

[defaults]
callback_whitelist = mail, slack

Параметр callback_whitelist вскоре будет переименован в
callback_enabled.

Плагины уведомлений и агрегирования    361

Многие из этих плагинов имеют дополнительные параметры на-
стройки, определяемые через переменные окружения или в файле
ansible.cfg. Бас предпочитает настраивать эти параметры в ansible.cfg,
чтобы не захламлять окружение дополнительными переменными. Кро-
ме того, ansible.cfg можно сохранить в системе управления версиями,
чтобы этими настройками могли воспользоваться другие разработчики
или пользователи.

Выяснить, какие параметры поддерживает конкретный плагин, мож-
но с помощью команды:

$ ansible-doc -t callback <имя_плагина>

Зависимости Python
Многие плагины требуют, чтобы на управляющей машине Ansible

были установлены дополнительные библиотеки для Python. В табл. 18.2
перечислены плагины и их зависимости. Установите их чтобы полу-
чить возможность использовать эти плагины; например, вот как можно
установить библиотеку prettytable для поддержки Slack:

$ pip3 install prettytable

foreman
Плагин foreman посылает уведомления в Foreman (http://theforeman.

org/). В табл. 18.3 перечислены параметры, используемые для настрой-
ки плагина, которые должны находиться в секции [callback_foreman] в
файле ansible.cfg.

Таблица 18.3. Параметры настройки для плагина foreman

Параметр Описание Значение по умолчанию

url URL сервера Foreman http://localhost:3000

client_cert Сертификат X509 для аутентификации на сервере
Foreman, если используется протокол HTTPS

/etc/foreman/client_cert.pem

client_key Соответствующий закрытый ключ /etc/foreman/client_key.pem

verify_certs Необходимость проверки сертификата Foreman.
Значение 1 требует проверять сертификаты
SSL с использованием установленных центров
сертификации. Значение 0 запрещает проверку

1

jabber
Плагин jabber посылает уведомления в Jabber (http://jabber.org/). Обрати-

те внимание, что настройки для этого плагина не имеют значений по
умолчанию. Они перечислены в табл. 18.4 и определяются исключи-
тельно через переменные окружения.

http://jabber.org/

362    Глава 18. Плагины обратного вызова

Таблица 18.4. Переменные окружения плагина jabber

Переменная окружения Описание

JABBER_SERV Имя хоста сервера Jabber

JABBER_USER Имя пользователя Jabber для аутентификации

JABBER_PASS Пароль пользователя Jabber для аутентификации

JABBER_TO Пользователь Jabber, которому посылается уведомление

junit
Плагин junit записывает результаты выполнения сценария в XML-

файл в формате JUnit. Настраивается с помощью переменных окруже-
ния, перечисленных в табл. 18.5. Создание XML-отчетов производится в
соответствии с соглашениями, перечисленными в табл. 18.6 .

Таблица 18.5. Переменные окружения плагина junit

Переменная окружения Описание Значение по
умолчанию

JUNIT_OUTPUT_DIR Каталог для файлов отчетов ~/.ansible.log

JUNIT_TASK_CLASS Настройки вывода: по одному классу
в файле YAML

false

JUNIT_FAIL_ON_CHANGE Каждую задачу, вернувшую статус
"changed", рассматривает как неудачный
тест Junit

false

JUNIT_FAIL_ON_IGNORE Каждую задачу, вернувшую статус
"changed", рассматривает как неудачный
тест JUnit, даже если установлен
параметр ignore_on_error

false

JUNIT_HIDE_TASK_ARGUMENTS Скрывать аргументы задачи false

JUNIT_INCLUDE_SETUP_TASKS_
IN_REPORT

Определяет необходимость включения
в отчет задач, осуществляющих
подготовку окружения тестирования

true

Таблица 18.6. Отчет JUnit

Вывод задачи Ansible Отчет Junit

оk pass

Ошибка с текстом EXPECTED FAILURE в имени задачи pass

Ошибка как результат исключения error

Ошибка по другой причине failure

skipped skipped

Плагины уведомлений и агрегирования    363

log_plays
Плагин log_plays записывает результаты в файлы журналов в каталоге

log_folder по одному файлу на хост.

logentries
Плагин logentries генерирует объекты JSON и посылает их в Logentries

(http://logentries.com/). Параметры настройки плагина должны определяться
в секции [callback_logentries] в файле ansible.cfg и перечислены в табл. 18.7.

Таблица 18.7. Параметры настройки плагина logentries

Параметр Описание Значение по умолчанию

token Токен сервера Logentries (Нет)

api Имя хоста конечной точки Logentries data.logentries.com

port Порт Logentries 80

tls_port Порт TLS Logentries 443

use_tls Использовать TLS для взаимодействий с Logentries false

flatten Реструктурировать результаты false

logstash
Плагин logstash передает факты и события задач в Logstash. Параме-

тры настройки плагина должны определяться в секции [callback_logstash]
в файле ansible.cfg и перечислены в табл. 18.8.

Таблица 18.9. Параметры настройки плагина logstash

Параметр Описание Значение по
умолчанию

format_version Формат журналирования v1

server Имя хоста сервера Logstash localhost

port Порт сервера Logstash 5000

pre_command Команда, которая должна выполняться перед запуском.
Ее результат помещается в поле ansible_pre_command_
output

null

type Тип сообщения ansible

mail
Плагин mail посылает электронное письмо, когда задача завершается

с ошибкой. Параметры настройки плагина должны определяться в сек-
ции [callback_mail] в файле ansible.cfg и перечислены в табл. 18.9.

http://logentries.com/

364    Глава 18. Плагины обратного вызова

Таблица 18.9. Параметры настройки плагина mail

Параметр Описание Значение по умолчанию

bcc Скрытые получатели копии письма null

cc Получатели копии письма null

mta Агент транспорта электронной почты localhost

mtaport Порт агента транспорта электронной почты 25

sender Отправитель null

to Получатель root

profile_roles
Этот плагин генерирует отчет о времени выполнения ролей Ansible.

profile_tasks
Плагин profile_tasks генерирует отчет о времени выполнения отдель-

ных задач и общего времени выполнения сценария, например:

Wednesday 11 August 2021 23:00:43 +0200 (0:00:00.910) 0:01:26.498 ******
===
Install apt packages --- 83.50s
Gathering Facts --- 1.46s
Check out the repository on the host ------------------------------------ 0.91s
Create project path --- 0.40s
Create a logs directory --- 0.21s

Плагин также выводит информацию о времени в процессе выполне-
ния задач, в том числе:

•	 дату и время запуска задачи;
•	 время выполнения предыдущей задачи, в скобках;
•	 накопленное время выполнения для данного сценария.

Вот пример вывода такой информации:

TASK [Create project path] ***
Wednesday 11 August 2021 23:00:42 +0200 (0:01:23.500) 0:01:24.975
changed: [web] ==> {"changed": true, "gid": 1000, "group": "vagrant", "mode":
"0755", "owner": "vagrant", "path": "/home/vagrant/mezzanine/mezzanine_example",
"size": 4096, "state": "directory", "uid": 1000}

В табл. 18.10 перечислены переменные окружения, используемые для
настройки плагина.

Плагины уведомлений и агрегирования    365

Таблица 18.10. Переменные окружения плагина profile_tasks

Переменная окружения Описание Значение по
умолчанию

PROFILE_TASKS_SORT_ORDER Сортировка вывода (ascending, none) none

PROFILE_TASKS_TASK_OUTPUT_LIMIT Максимальное количество задач в отчете
или all

20

say
Плагин say использует программу say или espeak чтобы сгенерировать

голосовое уведомление. Этот плагин не имеет параметров настройки.
Модуль say, в свою очередь, имеет параметр voice.

Обратите внимание, что в версии 2.8 плагин osx_say был переимено-
ван в say.

slack
Плагин slack посылает уведомления в Slack (http://slack.com/). Параметры

настройки плагина должны определяться в секции [callback_slack] в фай-
ле ansible.cfg и перечислены в табл. 18.11.

Таблица 18.11. Параметры настройки плагина slack

Параметр Описание Значение по умолчанию

webhook_url Адрес URL точки входа в Slack (Нет)

channel Комната Slack для отправки сообщения #ansible

username Имя пользователя, отправившего сообщение ansible

validate_certs Проверять сертификат SSL сервера Slack true

splunk
Этот плагин отправляет результаты выполнения задачи в формате

JSON в HTTP-коллектор Splunk. Параметры настройки плагина должны
определяться в секции [callback_splunk] в файле ansible.cfg и перечислены
в табл. 18.12.

Таблица 18.12. Параметры настройки плагина splunk

Параметр Описание Значение по умолчанию

authtoken Токен аутентификации, используемый для
подключения к HTTP-коллектору Splunk

null

include_milliseconds Определяет необходимость добавления
миллисекунд в поле времени

false

url Адрес URL HTTP-коллектора Splunk ansible

validate_certs Проверять сертификат SSL сервера Splunk true

http://slack.com/

366    Глава 18. Плагины обратного вызова

timer
Плагин timer выводит общее время выполнения сценария, например:

Playbook run took 0 days, 0 hours, 2 minutes, 16 seconds

Для этой цели обычно лучше использовать плагин profile_tasks, кото-
рый дополнительно выводит время выполнения каждой задачи.

Заключение
Плагины обратного вызова в Ansible поддерживают множество спосо-
бов отправки отчетов в информационные каналы, используемые в ор-
ганизации, что придает Ansible дополнительную ценность, так как все
эти возможности позволяют использовать систему для создания ком-
плексных решений в разных областях в сочетании с другими инстру-
ментами.

Глава 19
Собственные модули

Иногда требуется решить задачу, слишком сложную для модуля command
или shell, и при этом не существует готовых модулей для ее выполне-
ния. В таком случае можно написать модуль самостоятельно.

Модули можно считать «глаголами» в «языке» Ansible – без них YAML
ничего не смог бы сделать. Для машин Linux/BSD/Unix модули Ansible
программируются на языке Python, а для машин Windows – на Power-
Shell, но, в принципе, они могут программироваться на любом языке.
На рис. 19.1 показаны основные компоненты Ansible: проекты со сце-
нариями, реестр и модули.

Рис. 19.1. Модули

Пример: проверка доступности удаленного сервера
Допустим, нужно проверить доступность конкретного порта удален-
ного сервера. Если соединение с этим портом установить невозможно,
нужно, чтобы Ansible считала это ошибкой и прекращала операцию.

Свой модуль, которым мы будем заниматься в этой главе, яв-
ляется упрощенной версией модуля wait_for.

Система автоматизации Ansible

Пользователи

Реестр Сценарии

ПроектыМодули

Сетевые серверы

368    Глава 19. Собственные модули

Использование модуля script вместо написания
своего модуля
Помните, как в примере 7.13 мы использовали модуль script для запу-

ска своих сценариев на удаленных хостах? Иногда действительно про-
ще использовать модуль script, чем писать свой, полноценный модуль
Ansible.

Лорин хранит такие сценарии в папке scripts рядом со сценария-
ми Ansible. Например, можно создать сценарий playbooks/scripts/can_
reach.sh, который принимает имя хоста, порт и количество попыток
соединения:

$./can_reach.sh www.example.com 80 1

Можно создать сценарий командной оболочки, вызывающий netcat,
как показано в примере 19.1.

Пример 19.1. can_reach.sh

#!/bin/bash -eu
host="$1"
port="$2"
timeout="$3"
nc -z -w "$timeout" "$host" "$port"

А затем вызвать его, как показано ниже:

- name: Run my custom script
 script: scripts/can_reach.sh www.google.com 80 1

Имейте в виду, что сценарий будет запускаться на удаленных хостах
так же, как модули Ansible. Вследствие этого любые программы, необ-
ходимые сценарию (такие как nc в примере 19.1), должны быть установ-
лены на удаленных хостах заранее. Например, файл Vagrantfile для этой
главы устанавливает все необходимое, выполняя команду vagrant up, что
дает возможность экспериментировать со сценарием playbook.yml.

Сценарий можно написать на языке Perl, если Perl установлен на уда-
ленных хостах. В первой строке сценарий должен взывать интерпрета-
тор Perl, как показано в примере 19.21.

Пример 19.2. can_reach.pl

#!/usr/bin/perl
use strict;
use English qw(-no_match_vars); # PBP 79
use Carp; # PBP 283
use warnings; # PBP 431

1	 Обратите внимание, что этот сценарий компилируется в perlcritic --brutal.

Когда следует разрабатывать модули?    369

use Socket;
our $VERSION = 1;
my $host = $ARGV[0], my $port = $ARGV[1];

создать сокет, подключиться к порту
socket SOCKET, PF_INET, SOCK_STREAM, (getprotobyname 'tcp')[2]
 or croak "Can't create a socket $OS_ERROR\n";
connect SOCKET, pack_sockaddr_in($port, inet_aton($host))
 or croak "Can't connect to port $port! \n";

вывести отчет
print "Connected to $host:$port\n" or croak "IO Error $OS_ERROR";

закрыть сокет
close SOCKET or croak "close: $OS_ERROR";
__END__

С модулем script можно использовать сценарии, написанные на лю-
бом языке.

can_reach как модуль
Теперь реализуем can_reach в виде полноценного модуля Ansible на Py-

thon, который можно вызвать так:

- name: Check if host can reach the database
 can_reach:
 host: example.com
 port: 5432
 timeout: 1

Так можно проверить доступность порта 5432 на хосте example.com.
Если соединение установить невозможно, через секунду будет зафик-
сирована ошибка превышения тайм-аута.

Мы будем пользоваться этим примером на протяжении всей главы.

Когда следует разрабатывать модули?
Прежде чем приступать к разработке модуля, желательно ответить на
несколько простых вопросов. Модуль действительно предлагает ка-
кие-то новые возможности? Существуют ли похожие модули? Может
быть, лучше использовать или разработать плагин? Можно ли ту же за-
дачу решить с помощью простой роли? Может быть, лучше создать кол-
лекцию вместо единственного модуля? Намного проще использовать
существующий код или имеющиеся возможности Ansible, чем програм-
мировать на Python. Если вы разрабатываете Python API для своего про-
дукта, то тогда имеет смысл разработать коллекцию для него. Модули
могут входить в состав коллекций, как обсуждалось в главе 15.

370    Глава 19. Собственные модули

Где хранить свои модули
Ansible ищет модули в каталоге library, находящемся рядом со сцена-
рием Ansible. В нашем примере сценарии Ansible хранятся в каталоге
playbooks, поэтому свой модуль мы сохраним в файле playbooks/library/
can_reach. ansible-playbook просматривает каталог library по умолчанию,
но если вам нужно использовать модуль в специализированных коман-
дах Ansible, то добавьте в ansible.cfg следующую строку:

library = library

Модули также можно сохранять в подкаталоге library в ролях или в
коллекциях Ansible. В имени файла модуля можно использовать расши-
рение .py или другое, соответствующее выбранному языку сценариев.

Как Ansible вызывает модули
Прежде чем реализовать модуль, давайте посмотрим, как Ansible вызы-
вает их. Для этого Ansible:

1)	 генерирует автономный сценарий на Python с аргументами (толь-
ко модули на Python);

2)	 копирует модуль на хост;
3)	 создает файл аргументов на хосте (только для модулей не на язы-

ке Python);
4)	 вызывает модуль на хосте, передавая ему файл с аргументами;
5)	 анализирует стандартный вывод модуля.

Разберем каждый шаг более детально.

Генерация автономного сценария на Python
с аргументами (только модули на Python)
Если модуль написан на Python и использует вспомогательный код,

предоставляемый системой Ansible (описан ниже), то Ansible сгенери-
рует автономный сценарий на Python со встроенным вспомогательным
кодом и аргументами модуля.

Копирование модуля на хост
Сгенерированный сценарий на Python (для модулей на Python) или

локальный файл playbooks/library/can_reach (для модулей не на языке
Python) копируется во временный каталог на удаленном хосте. Если со-
единение с удаленным хостом устанавливается от имени пользователя
vagrant, то Ansible сохранит файл в каталоге, путь к которому выглядит
примерно так:

Как Ansible вызывает модули    371

/home/vagrant/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/
can_reach.

Создание файла с аргументами на хосте
(для модулей не на языке Python)
Если модуль написан не на языке Python, Ansible создаст на удален-

ном хосте файл, путь к которому выглядит примерно так:

/home/vagrant/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/
arguments.

Если вызвать модуль, как показано ниже:

- name: Check if host can reach the database server
 can_reach:
 host: db.example.com
 port: 5432
 timeout: 1

то файл аргументов будет содержать следующую информацию:

host=db.example.com port=5432 timeout=1

Можно потребовать от Ansible сгенерировать файл аргументов в фор-
мате JSON, добавив следующую строку в playbooks/library/can_reach:

WANT_JSON

В этом случае содержимое файла с аргументами будет выглядеть так:

{"host": "www.example.com", "port": "80", "timeout": "1"}

Вызов модуля
Ansible вызовет модуль и передаст ему файл с аргументами. Если мо-

дуль написан на Python, то Ansible выполнит эквивалент следующей
команды (заменив /path/to/ действительным путем к каталогу):

/path/to/can_reach

Если модуль написан на другом языке, то Ansible определит интер-
претатор по первой строке в модуле и выполнит эквивалент следующей
команды:

/path/to/interpreter /path/to/can_reach /path/to/arguments

Если предположить, что модуль can_reach реализован как сценарий
Bash и начинается со строки #!/bin/bash, то Ansible выполнит такую
команду:

/bin/bash /path/to/can_reach /path/to/arguments

372    Глава 19. Собственные модули

Но это только приближенный эквивалент. На самом деле Ansible про-
изведет ряд сложных манипуляций – заключит модуль в команду обо-
лочки, задаст региональные настройки и предусмотрит удаление моду-
ля после выполнения:

/bin/sh -c 'LANG=en_US.UTF-8 LC_CTYPE=en_US.UTF-8 /bin/bash /path/to/can_reach \
/path/to/arguments; rm -rf /path/to/ >/dev/null 2>&1'

Точную команду, которую выполняет Ansible, можно увидеть, пере-
дав параметр -vvv утилите ansible-playbook.

В Drbian может потребоваться задать следующие региональ-
ные настройки:

localedef -i en_US -f UTF-8 en_US.UTF-8

Порядок запуска модулей на Python удаленно во многом зависит от
особенностей командной оболочки. Обратите внимание, что Ansible не
использует ограниченные командные оболочки.

Ожидаемый вывод
Ansible ожидает, что модуль выведет результат в формате JSON. Напри-
мер:

{"changed": false, "failed": true, "msg": "could not reach the host"}

Как вы увидите ниже, если модуль написан на Python, то Ansible пре-
доставляет вспомогательные методы, облегчающие вывод информа-
ции в JSON.

Ожидаемые выходные переменные
Модуль может выводить любые переменные, однако Ansible опреде-

ляет специальные правила для возвращаемых переменных:

changed
Все модули Ansible должны возвращать переменную changed. По этой

логической переменной Ansible определяет факт изменения состояния
хоста модулем. Если в задаче имеется выражение notify для уведомле-
ния обработчика, то уведомление будет отправлено, только если changed
имеет значение true.

failed
Если модуль потерпел неудачу, он должен вернуть "failed": true. An-

sible расценит попытку выполнения такой задачи неудачной и прервет

Реализация модулей на Python    373

выполнение последующих задач на хосте, кроме случая, когда задача
содержит выражение ignore_errors или failed_when.

Если модуль выполнился успешно, он должен вернуть "failed": false
или вообще опустить эту переменную.

msg
Переменную msg можно использовать для вывода сообщения с причи-

ной неудачи выполнения модуля.
Если задача потерпела неудачу и модуль вернул переменную msg, то

Ansible выведет значение этой переменной, хотя и в несколько ином
виде. Например, если модуль вернул:

{"failed": true, "msg": "could not reach www.example.com:81"}

то Ansible выведет:

failed: [fedora] ==> {"failed": true}
msg: could not reach www.example.com:81

Если на одном хосте модуль потерпит неудачу, то Ansible продолжит
работу с другими хостами, где модуль выполнится успешно.

Реализация модулей на Python
Для модулей на Python Ansible предоставляет класс AnsibleModule, упро-
щающий анализ входной информации, вывод результатов в формате
JSON и вызов сторонних программ.

Фактически, обрабатывая модули на Python, Ansible внедряет аргу-
менты непосредственно в сгенерированный код, избавляя от необхо-
димости анализировать файл с аргументами. Подробнее об этом мы
поговорим далее в этой главе.

Давайте создадим модуль на Python и сохраним его в файле can_reach.
Сначала рассмотрим полную реализацию, а потом обсудим ее (см. при-
мер 19.3).

Пример 19.3. can_reach

#!/usr/bin/env python3
""" модуль can_reach для ansible """
from ansible.module_utils.basic import AnsibleModule 

def can_reach(module, host, port, timeout):
 """ метод can_reach устанавливает tcp-соединение с помощью nc """
 nc_path = module.get_bin_path('nc', required=True) 
 args = [nc_path, "-z", "-w", str(timeout), host, str(port)]
 # (return_code, stdout, stderr) = module.run_command(args)
 return module.run_command(args,check_rc=True) 

374    Глава 19. Собственные модули

def main():
 """ модуль для ansible, использующий netcat
 для проверки возможности соединения """
 module = AnsibleModule(
 argument_spec=dict(
 host=dict(required=True),
 port=dict(required=True, type='int'), 
 timeout=dict(required=False, type='int', default=3) 
),
 supports_check_mode=True �
)

 # В режиме проверки никаких действий не выполняется
 # Так как этот модуль не изменяет состояния хоста, он просто
 # возвращает changed=False
 if module.check_mode: �
 module.exit_json(changed=False) �
 host = module.params['host'] �
 port = module.params['port']
 timeout = module.params['timeout']

 if can_reach(module, host, port, timeout)[0] == 0:
 msg = "Could reach %s:%s" % (host, port)
 module.exit_json(changed=False, msg=msg) �
 else:
 msg = "Could not reach %s:%s" % (host, port)
 module.fail_json(msg=msg) �

if __name__ == "__main__":
 main()

	 Импорт вспомогательного класса AnsibleModule.
	 Получение пути к внешней программе.
	 Вызов внешней программы.
	 Создание экземпляра класса AnsibleModule.
	 Определение допустимого набора аргументов.
	 Обязательный аргумент.
	 Необязательный аргумент со значением по умолчанию.
	 Признак, что модуль поддерживает режим проверки.
	 Проверка запуска модуля в режиме проверки.
	 Успешное завершение, передает возвращаемое значение.
�	 Извлечение аргументов.
�	 Выход с признаком успеха, возвращает сообщение об успехе.
�	 Выход с признаком ошибки, возвращает сообщение с описанием

ошибки.

Реализация модулей на Python    375

Анализ аргументов
Гораздо проще понять, как AnsibleModule выполняет анализ аргументов,

на примере. Напомню, что наш модуль вызывается, как показано ниже:

- name: Check if host can reach the database server
 can_reach:
 host: db.example.com
 port: 5432
 timeout: 1

Предположим, параметры host и port являются обязательными, а time-
out – нет, со значением по умолчанию 3 с.

Создадим экземпляр AnsibleModule, передав словарь argument_spec, ключи
которого соответствуют именам параметров, а значения являются сло-
варями с информацией о параметрах:

module = AnsibleModule(
 argument_spec=dict(
 ...

В примере 19.2 мы объявили аргумент host обязательным. Ansible вы-
даст ошибку, если забыть передать его в вызов задачи:

host=dict(required=True),

Параметр timeout является необязательным. Ansible считает, что в ар-
гументах передаются строки, кроме случаев, когда заявлено иное. Пере-
менная timeout – целое число. Ее тип определяется как int, чтобы Ansible
могла автоматически преобразовать значение в число Python. Если па-
раметр timeout не задан, модуль установит его равным 3:

timeout=dict(required=False, type='int', default=3)

Конструктор AnsibleModule принимает также другие аргументы, кроме
argument_spec. В предыдущем примере мы добавили аргумент:

supports_check_mode = True

Он сообщает, что модуль поддерживает режим проверки. Мы рассмо-
трим его далее в этой главе.

Доступ к параметрам
После объявления объекта AnsibleModule появляется возможность до-

ступа к значениям аргументов через словарь params:

module = AnsibleModule(...)
host = module.params["host"]
port = module.params["port"]
timeout = module.params["timeout"]

376    Глава 19. Собственные модули

Импортирование вспомогательного класса
AnsibleModule
Ansible развертывает модули на хостах, передавая их в файлах ZIP,

включающих также вспомогательные файлы. Как следствие, есть воз-
можность явно импортировать классы, например:

from ansible.module_utils.basic import AnsibleModule

Свойства аргументов
Каждый аргумент модуля Ansible имеет несколько свойств, перечис-

ленных в табл. 19.1.

Таблица 19.1. Свойства аргументов

Свойство Описание

required Если True, то аргумент считается обязательным

default Значение по умолчанию для необязательного аргумента

choices Список допустимых значений для аргумента

deprecated_aliases Кортеж или список словарей с именами, версиями, датами,
именами коллекций

aliases Другие имена, которые можно использовать как псевдонимы этого
аргумента

type Тип аргумента.

elements Если тип определен как список, то его элементы определяют типы
элементов списка

fallback Кортеж с функцией и списком параметров для передачи ей

no_log Значение True запрещает журналирование поведения модуля

options Реализует возможность создания составных аргументов в виде
словарей2

mutually_exclusive Список взаимоисключающих аргументов

required_together Список аргументов, которые должны передаваться вместе

required_one_of Список аргументов, из которых хотя бы один должен передаваться
модулю

required_if Последовательность последовательностей

required_by Словарь, отображающий имена параметров в последовательность
имен параметров

required
Свойство required – единственное, которое всегда должно определять-

ся. Если его значение равно True, Ansible сообщит об ошибке при попыт-
ке вызвать модуль без этого аргумента.

Реализация модулей на Python    377

В примере модуля can_reach аргументы host и port являются обязатель-
ными, а timeout – нет.

default
Для аргументов с required=False необходимо определить в этом свой-

стве значение по умолчанию. В нашем примере:

timeout=dict(required=False, type='int', default=3)

Если пользователь попытается вызвать модуль так:

can_reach: host=www.example.com port=443

то аргумент module.params["timeout"] автоматически получит значение 3.

choices
Свойство choices позволяет ограничить значения аргумента предо-

пределенным списком, как в случае с аргументом distros в следующем
примере:

distro=dict(required=True, choices=['ubuntu', 'centos', 'fedora'])

Если пользователь попробует передать в аргументе значение, отсут-
ствующее в списке, например:

distro=debian

то Ansible выведет сообщение об ошибке.

aliases
Свойство aliases позволяет использовать другие имена для обраще-

ния к аргументу. Например, рассмотрим аргумент package в модуле apt:

module = AnsibleModule(
 argument_spec=dict(
 ...
 package = dict(default=None, aliases=['pkg', 'name'], type='list'),
)
)

Поскольку pkg и name являются псевдонимами аргумента package, следу-
ющие вызовы модуля эквиваленты:

- apt:
 package: vim

- apt:
 name: vim

- apt:
 pkg: vim

378    Глава 19. Собственные модули

type
Свойство type дает возможность объявить тип аргумента. По умолча-

нию Ansible считает, что аргументы являются строками.
Однако вы можете явно объявить тип аргумента, и Ansible преобра-

зует аргумент в желаемый формат. Поддерживаются следующие типы:

•	 str

•	 list;
•	 dict;
•	 bool;
•	 int;
•	 float;
•	 path;
•	 raw;
•	 jsonarg;
•	 json;
•	 bytes;
•	 bits.

В нашем примере мы объявили аргумент port с типом int:

port=dict(required=True, type='int'),

При обращении к нему через словарь params:

port = module.params['port']

мы получим переменную port с целым числом. Если бы мы не объяви-
ли тип аргумента как int в момент объявления свойства port, то ссылка
module.params['port'] вернула бы строку, а не целое число.

Элементы в списках разделяются запятой. Например, если предста-
вить, что у нас есть модуль foo с аргументом colors, принимающим список:

colors=dict(required=True, type='list')

то мы должны будем передавать в нем список, как показано ниже:

foo: colors=red,green,blue

Передавать словари можно в виде списков пар ключ=значение, разделен-
ных запятыми, либо в формате JSON.

Например, пусть имеется модуль bar с аргументом tags типа dict:

tags=dict(required=False, type='dict', default={})

В этом случае аргумент tags можно передать так:

- bar: tags=env=staging,function=web

Реализация модулей на Python    379

или так:

- bar: tags={"env": "staging", "function": "web"}

Для обозначения списков и словарей, которые передаются модулям
в качестве аргументов, в официальной документации Ansible исполь-
зуется термин составные аргументы (complex args). Порядок передачи
сценариям аргументов этих типов описывается в разделе «Короткое от-
ступление: составные аргументы задач» главы 7.

AnsibleModule: параметры метода
инициализатора
Метод-инициализатор класса AnsibleModule принимает несколько па-

раметров (табл. 19.2). Единственным обязательным параметром явля-
ется argument_spec.

Таблица 19.2. Аргументы инициализатора AnsibleModule

Параметр По
умолчанию Описание

argument_spec (Нет) Словарь с информацией об аргументах

bypass_checks False Если True, то не проверяет никаких
ограничений для параметров

no_log False Если True, то не журналирует поведения этого
модуля

check_invalid_arguments True Если True, то возвращает ошибку при попытке
вызвать модуль с неопознанным аргументом

mutually_exclusive (Нет) Список взаимоисключающих аргументов

required_together (Нет) Список аргументов, которые должны
передаваться вместе

required_one_of (Нет) Список аргументов, из которых хотя бы один
должен передаваться модулю

add_file_common_args False Поддержка аргументов модуля file

supports_check_mode False Если True, то модуль поддерживает режим
проверки

argument_spec
Словарь, содержащий описания всех допустимых аргументов модуля,

как рассказывалось в предыдущем разделе.

no_log
Когда модуль выполняется на хосте, он выводит информацию о рабо-

те в журнал syslog, находящийся в Ubuntu в каталоге /var/log/syslog.

380    Глава 19. Собственные модули

Вывод выглядит следующим образом:

Aug 29 18:55:05 ubuntu-focal python3[5688]: ansible-lineinfile Invoked with
dest=/etc/ssh/sshd_config.d/10-crypto.conf regexp=^HostKeyAlgorithms line=
state=present path=/etc/ssh/sshd_config.d/10-crypto.conf backrefs=False
create=False backup=False firstmatch=False unsafe_writes=False
search_string=None insertafter=None insertbefore=None validate=None
mode=None owner=None group=None seuser=None serole=None selevel=None
setype=None attributes=None
Aug 29 18:55:05 ubuntu-focal python3[5711]: ansible-stat Invoked with
path=/etc/ssh/ssh_host_ed25519_key follow=False get_md5=False
get_checksum=True get_mime=True get_attributes=True checksum_algorithm=sha1
Aug 29 18:55:06 ubuntu-focal python3[5736]: ansible-file Invoked with
path=/etc/ssh/ssh_host_ed25519_key mode=384 recurse=False force=False
follow=True modification_time_format=%Y%m%d%H%M.%S
access_time_format=%Y%m%d%H%M.%S unsafe_writes=False state=None
_original_basename=None _diff_peek=None src=None modification_time=None
access_time=None owner=None group=None seuser=None serole=None selevel=None
setype=None attributes=None
Aug 29 18:55:06 ubuntu-focal python3[5759]: ansible-lineinfile Invoked with
dest=/etc/ssh/sshd_config regexp=^HostKey /etc/ssh/ssh_host_ed25519_key
line=HostKey /etc/ssh/ssh_host_ed25519_key insertbefore=^# HostKey
/etc/ssh/ssh_host_rsa_key mode=384 state=present path=/etc/ssh/sshd_config
backrefs=False create=False backup=False firstmatch=False
unsafe_writes=False search_string=None insertafter=None validate=None
owner=None group=None seuser=None serole=None selevel=None setype=None
attributes=None

Если модуль принимает конфиденциальную информацию в аргу-
ментах, то предпочтительнее отключить журналирование. Для отклю-
чения записи в syslog передайте в инициализатор AnsibleModule параметр
no_log=True.

check_invalid_arguments
По умолчанию Ansible проверяет допустимость всех аргументов, пе-

редаваемых модулю. Эту проверку можно отключить, передав в иници-
ализатор AnsibleModule параметр check_invalid_arguments=False.

mutually_exclusive
Параметр mutually_exclusive содержит список аргументов, которые

нельзя одновременно передавать модулю. Например, модуль lineinfile
позволяет добавить строку в файл. Ему можно передать аргумент insert-
before со строкой для вставки перед указанной или аргумент insertafter
со строкой для вставки после указанной. Но нельзя передать сразу оба
аргумента.

Реализация модулей на Python    381

Поэтому модуль определяет эти два аргумента как взаимоисключа-
ющие:

mutually_exclusive=[['insertbefore', 'insertafter']]

required_one_of
Параметр required_one_of определяет список аргументов, из которых

хотя бы один должен быть передан модулю. Например, модуль pip, ис-
пользуемый для установки пакетов Python, может принять либо аргу-
мент name с именем пакета, либо аргумент requirements с именем файла,
содержащим список пакетов. Необходимость передачи хотя бы одного
из аргументов определена в модуле так:

required_one_of=[['name', 'requirements']]

add_file_common_args
Многие модули создают или модифицируют файлы. Пользователю

часто требуется установить некоторые атрибуты конечного файла, та-
кие как владелец, группа и разрешения.

Установку этих атрибутов можно произвести с помощью модуля file:

- name: Download a file
 get_url:
 url: http://www.example.com/myfile.dat
 dest: /tmp/myfile.dat

- name: Set the permissions
 file:
 path: /tmp/myfile.dat
 owner: vagrant
 mode: '0600'

Ansible позволяет указать, что модуль принимает все те же аргумен-
ты, что и модуль file. Благодаря этому можно потребовать установить
атрибуты файла, просто передав соответствующие аргументы модулю,
который создает или изменяет файлы. Например:

- name: Download a file
 get_url:
 url: http://www.example.com/myfile.dat
 dest: /tmp/myfile.dat
 owner: vagrant
 mode: '0600'

Чтобы объявить поддержку модулем этих аргументов, необходимо
передать параметр:

add_file_common_args=True

382    Глава 19. Собственные модули

Класс AnsibleModule предоставляет вспомогательные методы для обра-
ботки перечисленных параметров.

Метод load_file_common_arguments принимает словарь с параметрами и
возвращает словарь параметров со всеми аргументами, соответствую-
щими установленным атрибутам файла.

Метод set_fs_attributes_if_different принимает словарь с параметра-
ми и логический флаг как признак изменения состояния хоста. Метод
устанавливает атрибуты файла и возвращает true, если состояние хоста
изменилось (либо входной аргумент-флаг имел значение true, либо вы-
полнено изменение файла как побочный эффект).

Если вы используете общие аргументы для установки атрибутов фай-
лов, не определяйте их явно. Для доступа к этим аргументам и установ-
ки атрибутов файла используйте вспомогательные методы:

module = AnsibleModule(
 argument_spec=dict(
 dest=dict(required=True),
 ...
),
 add_file_common_args=True
)

"changed" получит значение True, если модуль изменил состояние хоста
changed = do_module_stuff(param)

file_args = module.load_file_common_arguments(module.params)

changed = module.set_fs_attributes_if_different(file_args, changed)
module.exit_json(changed=changed, ...)

Ansible предполагает, что модуль имеет аргумент path или
dest, содержащий путь к файлу. К сожалению, не все модули
определяют эти параметры, поэтому в случае сомнений про-
верьте:

$ ansible-doc module

bypass_checks
Прежде чем запустить модуль, Ansible проверит, все ли аргументы

удовлетворяют ограничениям, и, если какое-то ограничение нарушено,
сообщит об ошибке. Проверка считается пройденной, если:

•	 нет взаимоисключающих аргументов;
•	 переданы все аргументы, отмеченные как required;

Реализация модулей на Python    383

•	 аргументы со свойством choices имеют допустимые значения;
•	 аргументы с заданным типом type имеют соответствующие зна-

чения;
•	 аргументы со свойством required_together используются совместно;
•	 передан хотя бы один аргумент из списка required_one_of.

Все эти проверки можно запретить, установив bypass_checks=True.

Возврат признака успешного завершения
или неудачи
Чтобы сообщить об успешном завершении, используйте метод exit_

json. Вы всегда должны возвращать флаг changed, и хорошей практикой
считается возвращать msg с осмысленным сообщением:

module = AnsibleModule(...)
...
module.exit_json(changed=False, msg="meaningful message goes here")

Для вывода сообщения о неудаче используйте метод fail_json. Всегда
возвращайте сообщение msg, объясняющее причины неудачи:

module = AnsibleModule(...)
...
module.fail_json(msg="Out of disk space")

Вызов внешних команд
Класс AnsibleModule предоставляет метод run_command для вызова внеш-

них программ, который использует модуль Python subprocess. Он прини-
мает аргументы, перечисленные в табл. 19.3.

Таблица 19.3. Аргументы run_command

Аргумент Тип По
умолчанию Описание

args
(по умолчанию)

Строка или список
строк

(Нет) Команда для выполнения
(см. следующий раздел)

check_rc Логический False Если True, производит вызов fail_
json, когда команда возвращает
ненулевое значение

close_fds Логический True Передает как аргумент close_fds
в вызов subprocess.Popen

executable Строка
(путь к программе)

(Нет) Передает как аргумент executable
в вызов subprocess.Popen

data Строка (Нет) Посылается в стандартный ввод
дочернего процесса

384    Глава 19. Собственные модули

Аргумент Тип По
умолчанию Описание

binary_data Логический False Если False и присутствует data, то
Ansible передаст символ перевода
строки в стандартный ввод после
data

path_prefix Строка
(список путей)

(Нет) Список путей, разделенных
двоеточиями, для добавления перед
содержимым переменной окруже-
ния PATH

cwd Строка
(путь к каталогу)

(Нет) Если определен, то Ansible перейдет
в этот каталог перед запуском

use_unsafe_shell Логический False См. следующий раздел

Если args передается как список (см. пример 19.4), то Ansible вызовет
subprocess.Popen с параметром shell=False.

Пример 19.4. Передача args со списком

module = AnsibleModule(...)
...
module.run_command(['/usr/local/bin/myprog', '-i', 'myarg'])

Если в args передать строку, как показано в примере 19.5, то поведение
будет зависеть от значения use_unsafe_shell. Если use_unsafe_shell=false, то
Ansible разобьет args на список и вызовет subprocess.Popen с параметром
shell=False. Если use_unsafe_shell=true, то Ansible передаст args в subprocess.
Popen в виде строки с shell=True1.

Пример 19.5. Передача args со строкой

module = AnsibleModule(...)
...
module.run_command('/usr/local/bin/myprog -i myarg')

Режим проверки (пробный прогон)
Ansible поддерживает специальный режим проверки, который вклю-

чается при передаче команде ansible-playbook параметра -C или --check. По
своей сути он похож на режим пробного прогона, который поддержива-
ют многие другие инструменты.

При выполнении в режиме проверки сценарий не производит на хо-
сте никаких изменений, а просто сообщает, какие задачи могут изме-
нить состояние хоста, возвращая признак успешного выполнения без
внесения изменений или сообщение об ошибке.
1	 За дополнительной информацией о классе subprocess.Popen в стандартной библиотеке Python

обращайтесь к документации (https://oreil.ly/trNKm).

https://oreil.ly/trNKm

Документирование модуля    385

Модуль должен явно поддерживать режим проверки. Если вы
собираетесь написать свой модуль, то рекомендую добавить
в него поддержку режима проверки, чтобы он был добропо-
рядочным гражданином Ansible.

Чтобы сообщить Ansible, что модуль поддерживает режим провер-
ки, передайте методу-инициализатору класса AnsibleModule параметр
supports_check_mode со значением True, как показано в примере 19.6.

Пример 19.6. Уведомление Ansible о поддержке режима проверки

module = AnsibleModule(
 argument_spec=dict(...),
 supports_check_mode=True)

Модуль должен определить режим проверкой значения атрибута
check_mode объекта AnsibleModule, как показано в примере 19.7, и вызвать
метод exit_json или fail_json, как обычно.

Пример 19.7. Проверка режима

module = AnsibleModule(...)
...if module.check_mode:
 # проверить, мог бы модуль внести изменения
 would_change = would_executing_this_module_change_something()
 module.exit_json(changed=would_change)

Как автор модуля, вы должны также гарантировать, что в режиме
проверки ваш модуль не изменит состояния хоста.

Документирование модуля
В соответствии со стандартами проекта Ansible модули обязательно долж-
ны документироваться, чтобы HTML-документация по модулю генери-
ровалась корректно и программа ansible-doc могла отобразить ее. Ansible
использует особый синтаксис YAML для документирования модулей.

Ближе к началу модуля определите строковую переменную DOCUMEN-
TATION с описанием и строковую переменную EXAMPLES с примерами ис-
пользования. Если модуль возвращает информацию в формате JSON, то
отразите это в переменной RETURN.

В примере 19.8 приводится раздел с документацией для модуля can_
reach.

Пример 19.8. Пример модуля с документацией

DOCUMENTATION = r'''

386    Глава 19. Собственные модули

module: can_reach
short_description: Проверяет доступность сервера
description: Проверяет возможность подключения к удаленному серверу
version_added: "1.8"
options:
 host:
 description:
 - Имя хоста или IP-адрес
 required: true
 port:
 description:
 - Номер порта TCP
 required: true
 timeout:
 description:
 - Длительность попытки (в секундах) установить соединение,
 прежде чем она будет объявлена неудачной
 required: false
 default: 3
requirements: [nmap]
author: Lorin Hochstein, Bas Meijer
notes:
 - Это просто пример, демонстрирующий, как писать модули.
 - Возможно, вы предпочтете использовать встроенный модуль M(wait_for).
'''
EXAMPLES = r'''
Проверить, запущен ли сервер ssh с тайм-аутом по умолчанию
- can_reach: host=localhost port=22 timeout=1
Проверить, запущен ли сервер postgres с тайм-аутом по умолчанию
- can_reach: host=example.com port=5432
'''

В документации допускается использовать рудиментарную разметку.
В табл. 19.4 описывается синтаксис разметки, поддерживаемой инстру-
ментом вывода документации, а также советы по ее использованию.

Таблица 19.4. Разметка в документации

Тип Пример синтаксиса Когда использовать

URL U(http://www.example.com) Для отображения адресов URL

Модуль M(apt) Имена модулей

Курсив I(port) Имена параметров

Моноширинный C(/bin/bash) Имена файлов и параметров

Существующие модули Ansible являются превосходным источником
примеров для документирования.

Отладка модуля    387

Отладка модуля
В репозитории Ansible на GitHub имеется пара сценариев, позволяю-
щих запускать модули непосредственно на локальной машине, без ис-
пользования команды ansible или ansible-playbook.

Клонируйте репозиторий Ansible:

$ git clone https://github.com/ansible/ansible.git

Перейдите в корневой каталог клонированного репозитория:

$ cd ansible

Создайте виртуальное окружение:

$ python3 -m venv venv

Активируйте виртуальное окружение:

$ source venv/bin/activate

Установите необходимые зависимости:

$ python3 -m pip install --upgrade pip
$ pip install -r requirements.txt

Запустите сценарий настройки окружения разработки:

$ source hacking/env-setup

Вызовите модуль:

$ ansible/hacking/test-module -m /path/to/can_reach -a "host=example.com port=81"

Поскольку на example.com нет службы, обслуживающей порт 81, мо-
дуль завершится с ошибкой и вернет сообщение:

* including generated source, if any, saving to:
/Users/bas/.ansible_module_generated
* ansiballz module detected; extracted module source to:
/Users/bas/debug_dir

RAW OUTPUT

{"cmd": "/usr/bin/nc -z -v -w 3 example.com 81", "rc": 1, "stdout": "",
"stderr": "nc: connectx to example.com port 81 (tcp) failed: Operation timed
out\n", "failed": true, "msg": "nc: connectx to example.com port 81 (tcp)
failed: Operation timed out", "invocation": {"module_args": {"host":
"example.com", "port": 81, "timeout": 3}}}

PARSED OUTPUT
{

388    Глава 19. Собственные модули

 "cmd": "/usr/bin/nc -z -v -w 3 example.com 81",
 "failed": true,
 "invocation": {
 "module_args": {
 "host": "example.com",
 "port": 81,
 "timeout": 3
 }
 },
 "msg": "nc: connectx to example.com port 81 (tcp) failed: Operation
timed out",
 "rc": 1,
 "stderr": "nc: connectx to example.com port 81 (tcp) failed: Operation
timed out\n",
 "stdout": ""
}

Как следует из полученного сообщения, при запуске test-module Ansible
сгенерирует сценарий на Python и скопирует его в ~/.ansible_module_
generated. Это автономный сценарий на Python, который можно исполь-
зовать непосредственно.

Начиная с версии Ansible 2.1.0, этот сценарий на Python включает со-
держимое ZIP-файла в формате base64 с исходным кодом вашего мо-
дуля, а также код для распаковки этого ZIP-файла и выполнения кода
внутри него.

Этот файл не принимает никаких аргументов – все необходимые ар-
гументы Ansible встраивает непосредственно в файл, в переменную
ANSIBALLZ_PARAMS:

ANSIBALLZ_PARAMS = '{"ANSIBLE_MODULE_ARGS": {"_ansible_selinux_special_fs":
["fuse", "nfs", "vboxsf", "ramfs", "9p", "vfat"], "_ansible_tmpdir":
"/Users/bas/.ansible/tmp/ansible-local-12753r6nenhh",
"_ansible_keep_remote_files": false, "_ansible_version": "2.12.0.dev0",
"host": "example.com", "port": "81"}}'

Изучение особенностей отладки модулей в Ansible поможет вам луч-
ше понять, как работает система, даже если вы не собираетесь писать
свои модули.

Создание модуля на Bash
Если вы собираетесь создавать свои модули для Ansible, я советую пи-
сать их на Python, потому что, как мы видели выше в этой главе, для
таких модулей Ansible предоставляет вспомогательные классы. Для
управления системами Windows используются модули, написанные на
PowerShell. Однако при желании модули можно писать на других язы-

Создание модуля на Bash    389

ках. Это может потребоваться, например, если модуль зависит от сто-
ронней библиотеки, не реализованной на Python. Или, может быть, мо-
дуль настолько прост, что его проще написать на Bash.

В этом разделе мы рассмотрим пример реализации модуля в виде
сценария на Bash. Он будет очень похож на реализацию в примере 19.1.
Главное отличие – анализ входных аргументов и генерация вывода, ко-
торый ожидает получить Ansible.

Модули на Bash и сокращенный синтаксис ввода
В модулях на Bash можно использовать сокращенный синтаксис ввода. Но
я не рекомендую использовать этот прием, потому что он предполагает ис-
пользование встроенной команды source, что несет потенциальную угрозу
безопасности. Однако если вы настроены решительно, то прочитайте ста-
тью «Shell scripts as Ansible modules» («Сценарии на языке командной обо-
лочки в качестве модулей Ansible») по адресу https://oreil.ly/A11X6, написанную
Яном-Питом Менсом (Jan-Piet Mens):

source ${1} # Очень, *очень*, опасно!

Мы используем формат JSON для передачи входных аргументов и ин-
струмент jq (http://stedolan.github.io/jq/) для парсинга JSON в командной стро-
ке. Это значит, что для запуска модуля на хосте придется установить jq.
В примере 19.9 приводится полная реализация модуля на Bash.

Пример 19.9. Модуль can_reach на Bash

#!/bin/bash -e
WANT_JSON

Чтение переменных из файла с помощью jq
host=$(jq -r .host <"$1")
port=$(jq -r .port <"$1")
timeout=$(jq -r .timeout <"$1")

По умолчанию timeout=3
if [[$timeout = null]]; then
 timeout=3
fi

Проверить достижимость хоста
if nc -z -w "$timeout" "$host" "$port"; then
 echo '{"changed": false}'
else
 echo "{\"failed\": true, \"msg\": \"could not reach $host:$port\"}"
fi

https://oreil.ly/A11X6
http://stedolan.github.io/jq/

390    Глава 19. Собственные модули

Мы добавили в комментарий WANT_JSON, чтобы Ansible знала, что
входные данные должны передаваться в формате JSON. Майкл Де-
Хаан (Michael DeHaan) называет такой код JSON «рудиментарным»;
в 2013 году он написал: «Ansible имеет рудиментарную поддержку
JSON, распознавая только список пар ключ/значение, поэтому техниче-
ски нельзя передавать данные в полноценном формате JSON».

Альтернативное местоположение
интерпретатора Bash
Обратите внимание: модуль предполагает, что интерпретатор Bash
находится в /bin/bash. Однако не во всех системах выполняемый файл
интерпретатора находится именно там. Мы можем предложить Ansible
проверить наличие интерпретатора Bash в других каталогах, определив
переменную ansible_bash_interpreter на хостах, где он может устанавли-
ваться в другие каталоги.

Например, допустим, что у нас имеется хост fileserver.example.com с ОС
FreeBSD, где интерпретатор Bash доступен как /usr/local/bin/bash. Создав
файл host_vars/fileserver.example.com со следующим содержимым:

ansible_bash_interpreter: /usr/local/bin/bash

можно создать переменную хоста.
В таком случае, когда Ansible будет запускать модуль на хосте fileserv-

er.example.com, она использует /usr/local/bin/bash вместо /bin/bash.
Выбор интерпретатора системой Ansible определяется поиском сим-

волов #! и просмотром базового имени первого элемента. В нашем при-
мере Ansible найдет строку:

#!/bin/bash

извлечет из /bin/bash базовое имя, т. е. bash. Затем использует перемен-
ную ansible_bash_interpreter, если она задана пользователем.

Учитывая, как Ansible определяет местоположение интерпре-
татора, если в строке #! указать вызов команды /usr/bin/env,
например #!/usr/bin/env bash, то Ansible ошибочно определит
интерпретатор как env, потому что вызовет basename для анали-
за пути /usr/bin/env, чтобы определить интерпретатор.
Поэтому, чтобы не попасть впросак, не вызывайте env в стро-
ке #!, точно указывайте путь к интерпретатору и переопре-
деляйте его с помощью переменной ansible_bash_interpreter
(или ее аналога), если это необходимо.

Заключение    391

Заключение
В этой главе мы узнали, как писать модули на Python и на других язы-
ках, а также как можно избежать необходимости писать свои модули,
использовав модуль script. Если вы все-таки решите взяться за написа-
ние модуля, я рекомендую прочитать руководство разработчика моду-
лей (https://oreil.ly/YCSdz). Лучший способ овладеть искусством создания мо-
дулей – углубиться в чтение исходного кода модулей, входящих в состав
Ansible, на GitHub (https://oreil.ly/G4CUl).

https://oreil.ly/YCSdz
https://oreil.ly/G4CUl

Глава 20
Ускорение работы Ansible

Начав использовать Ansible на регулярной основе, у вас быстро появит-
ся желание ускорить работу сценариев. В этой главе мы обсудим стра-
тегии сокращения времени, которое требуется Ansible для выполнения
сценариев.

Мультиплексирование SSH и ControlPersist
Дочитав книгу до этой главы, вы уже знаете, что в качестве основного
транспортного механизма Ansible использует протокол SSH. В частно-
сти, по умолчанию Ansible использует именно SSH.

Поскольку протокол SSH работает поверх протокола TCP, вам потре-
буется установить новое TCP-соединение с удаленной машиной. Клиент
и сервер должны выполнить начальную процедуру установки соедине-
ния, прежде чем начать выполнять какие-то фактические действия. Эта
процедура занимает некоторое время. Для каждого отдельного хоста и
для каждой задачи это время невелико, но если хостов и/или задач мно-
го, то суммарное время может оказаться внушительным.

Во время выполнения сценариев Ansible устанавливает достаточно
много SSH-соединений, например для копирования файлов или выпол-
нения команд. Каждый раз Ansible устанавливает новое SSH-соединение
с хостом.

OpenSSH – наиболее распространенная реализация SSH и SSH-клиент
по умолчанию, который установлен на вашей локальной машине, если
вы работаете в Linux или macOS. OpenSSH поддерживает вид оптими-
зации с названием мультиплексирование каналов SSH, который также
называют ControlPersist. Когда используется мультиплексирование, не-
сколько SSH-сеансов с одним и тем же хостом использует одно и то же
TCP-соединение, т. е. TCP-соединение устанавливается лишь однажды.

Когда активируется мультиплексирование:

•	 при первом подключении к хосту OpenSSH устанавливает основ-
ное соединение;

Мультиплексирование SSH и ControlPersist    393

•	 OpenSSH создает сокет домена Unix (известный как управляю-
щий сокет), связанный с удаленным хостом;

•	 при следующем подключении к хосту вместо нового TCP-под-
ключения OpenSSH использует контрольный сокет.

Основное соединение остается открытым в течение заданного поль-
зователем интервала времени, а затем закрывается SSH-клиентом. По
умолчанию Ansible устанавливает интервал, равный 60 с.

Включение мультиплексирования SSH вручную
Ansible включает мультиплексирование SSH автоматически. Но, что-

бы вы понимали, что за этим стоит, включим его вручную и соединимся
с удаленной машиной посредством SSH.

В примере 20.1 показаны настройки мультиплексирования из фай-
ла ~/.ssh/config.

Пример 20.1. Включение мультиплексирования в ssh/config

ControlMaster auto
ControlPath ~/.ssh/sockets/%r@%h:%p
ControlPersist 10m

Строка ControlMaster auto включает мультиплексирование SSH и сооб
щает клиенту SSH о необходимости создать основное соединение и
управляющий сокет, если они еще не существуют.

Строка ControlPersist 10m требует от SSH разорвать основное соеди-
нение, если в течение 10 минут не производилось попыток создать
SSH-подключение.

Строка ControlPath ~/.ssh/sockets/%r@%h:%p сообщает клиенту SSH, где рас-
положить файл сокета домена Unix в файловой системе.

•	 %l – имя локального хоста, включая доменное имя;
•	 %h – имя целевого хоста;
•	 %p – номер порта;
•	 %r – имя пользователя на удаленном хосте;
•	 %C – соответствует хешу %l%h%p%r.

Если соединение осуществляется от имени пользователя vagrant:

$ ssh -i ~/.vagrant.d/insecure_private_key vagrant@192.168.56.10.nip.io

в этом случае SSH создаст файл управляющего сокета ~/.ssh/sockets/
vagrant@192.168.56.10.nip.io:22 при первом подключении к серверу.
В аргументах для ControlPath можно использовать символ тильды (~) для
ссылки на домашний каталог пользователя. Мы советуем передавать
команде ControlPath передавать по меньшей мере %h, %p и %r (или %C) и
помещать файл сокета в каталог, доступный для записи другим пользо-

394    Глава 20. Ускорение работы Ansible

вателям. Это гарантирует уникальную идентификацию совместно ис-
пользуемых соединений.

Проверить состояние основного соединения можно с помощью пара
метра -O check:

$ ssh -O check vagrant@192.168.56.10.nip.io

Если основное соединение активно, эта команда вернет:

Master running (pid=5099)

Вот так выглядит основной управляющий процесс в выводе коман-
ды ps 5099:

PID TT STAT TIME COMMAND
5099 ?? Ss 0:00.00 ssh: /Users/bas/.ssh/sockets/vagrant@192.168.56.10.
nip.io:22 [mux]

Разорвать основное соединение можно с помощью параметра -O exit:

$ ssh -O exit vagrant@192.168.56.10.nip.io

Больше деталей об этих настройках можно найти на странице ssh_
config руководства man:

$ man 5 ssh_config

Мы протестировали скорость создания SSH-соединений. Следующая
команда вернет время, которое требуется для создания SSH-подключе-
ния и выполнения программы /usr/bin/true, которая всегда завершается
с кодом 0:

$ time ssh -i ~/.vagrant.d/insecure_private_key \
 vagrant@192.168.56.10.nip.io \
 /usr/bin/true

Когда мы первый раз запустили ее, результат выглядел так1:
real 0m0.319s
user 0m0.018s
sys 0m0.011s

Наибольший интерес представляет общее время: 0m0.319s total. Этот
результат говорит о том, что на выполнение всей команды потребова-
лось 0,319 с. (Общее время иногда также называют астрономическим
временем, поскольку оно показывает, сколько прошло времени, как
если бы его измеряли по настенным часам.)

Во второй раз результат выглядел так:
real 0m0.010s
user 0m0.004s
sys 0m0.006s

1	 Формат результата может отличаться в зависимости от командной оболочки и ОС. Мы исполь-
зовали Bash в macOS.

Мультиплексирование SSH и ControlPersist    395

Общее время сократилось до 0,010 с, т. е. экономия составляет при-
мерно 0,3 с для каждого SSH-соединения, начиная со второго. Напом-
ним, что для выполнения задачи Ansible открывает, по крайней мере,
два SSH-сеанса: один – для копирования файла модуля на хост, второй –
для запуска модуля на хосте1. Это означает, что мультиплексирование
может сэкономить порядка одной или двух секунд на каждой задаче в
сценарии.

Параметры мультиплексирования SSH в Ansible
В табл. 20.1 перечислены параметры мультиплексирования SSH, ис-

пользуемые в Ansible.

Таблица 20.1. Параметры мультиплексирования SSH в Ansible

Параметр Значение

ControlMaster auto

ControlPath ~/.ssh/sockets/%r@%h:%p

ControlPersist 60s

Нам никогда не приходилось изменять значение по умолчанию Con-
trolMaster. ControlPersist=10m уменьшает расходы на создание сокетов, но
если ваш ноутбук уйдет в спящий режим в то время, когда активно
мультиплексирование, то потребуется дополнительное время на вос-
становление после выхода из спящего режима.

На практике нам приходилось изменять только значение ControlPath,
потому что операционная система устанавливает максимальную дли-
ну пути к файлу сокета домена Unix. Если строка в ControlPath окажется
слишком длинной, мультиплексирование не будет работать. К сожале-
нию, система Ansible не сообщает, если строка в ControlPath превысит это
ограничение, она просто не будет использовать мультиплексирование
SSH.

Управляющую машину можно протестировать вручную, устанавли-
вая SSH-соединение с помощью того же значения ControlPath, что ис-
пользует Ansible:

$ CP=~/.ansible/cp/ansible-ssh-%h-%p-%r
$ ssh -o ControlMaster=auto -o ControlPersist=60s \
 -o ControlPath=$CP \
 ubuntu@ec2-203-0-113-12.compute-1.amazonaws.com \
 /bin/true

1	 Один из этих шагов можно оптимизировать, использовав конвейерный режим, описанный да-
лее в этой главе.

396    Глава 20. Ускорение работы Ansible

Если строка ControlPath окажется слишком длинной, вы увидите сооб-
щение об ошибке, как показано в примере 20.2.

Пример 20.2. Слишком длинная строка ControlPath

"/Users/lorin/.ansible/cp/ansible-ssh-ec2-203-0-113-12.compute-1.amazonaws.
com-22-ubuntu.KIwEKEsRzCKFABch"
too long for Unix domain socket

Это обычное дело при подключении к экземплярам Amazon EC2, ко-
торым назначаются длинные имена хостов.

Решить проблему можно настройкой использования более коротких
строк в ControlPath. Официальная документация (https://oreil.ly/V6qpw) реко-
мендует так определять этот параметр в файле ansible.cfg:

[ssh_connection]
control_path = %(directory)s/%%h-%%r

Ansible заменит %(directory)s на $HOME/.ansible/cp (двойной знак процен-
та (%%) необходим для экранирования, потому что знак процента в фай-
лах .ini является специальным символом).

При изменении конфигурации SSH-соединения, например
параметра ssh_args, когда мультиплексирование уже включе-
но, такое изменение не вступит в силу, пока управляющий
сокет остается открытым с прошлого подключения.

Еще о настройке SSH
При подготовке множества серверов или для наблюдения за их безопас-
ностью часто желательно оптимизировать настройки SSH на клиентах
и серверах. Протокол SSH поддерживает несколько алгоритмов уста-
новки соединений, аутентификации клиентов и серверов и настройки
параметров сеансов. Для установки соединений требуется время, и раз-
ные алгоритмы работают с разной скоростью и уровнем безопасности.
Если вы используете Ansible для управления серверами ежедневно, то,
вероятно, имеет смысл рассмотреть настройки SSH более подробно.

Рекомендации по выбору алгоритмов
Основные дистрибутивы Linux распространяются с «совместимой»

конфигурацией серверов SSH. Она позволяет любому подключиться и
авторизоваться на сервере, используя любое программное обеспечение
клиента, если он знает учетные данные пользователя. Стоит вдумчиво
поразмышлять – действительно ли это то, что вам нужно!

https://oreil.ly/V6qpw

Еще о настройке SSH    397

Бас исследовал скорость установки SSH-соединений Ansible, изменяя
порядок параметров и их значения в ssh_args, и пришел к выводу, что
большинство из них уже оптимизированы. Однако Бас нашел два зна-
чения в ssh_args, экономящие несколько микросекунд в комбинации с
параметрами мультиплексирования, обсуждавшимися выше:

 ssh_args = -4 -o PreferredAuthentications=publickey

Значение -4 выбирает семейство протоколов inet (ipv4), а Preferred
Authentications перенаправляет аутентификацию пользователя на со-
кет ssh-agent.

В sshd_config Бас сначала выбирает самый быстрый алгоритм и добав-
ляет несколько безопасных альтернатив для совместимости, но в обрат-
ном порядке для скорости.

Чтобы еще немного увеличить скорость, Бас изменил типы пар клю-
чей на современный стандарт. Криптографическая эллиптическая кри-
вая Curve25519 быстрее и безопаснее, чем RSA (https://oreil.ly/7KzzL), поэто-
му он использует ее с PublicKeyAuthentication и для ключей хоста.

Генерируя пару ключей на своей машине, Бас использует пара-
метр -a 100 для защиты от атаки методом перебора:

$ ssh-keygen -t ed25519 -a 100 -C bas

Следующая задача гарантирует, что со своим ключом Бас будет иметь
исключительный доступ к учетной записи пользователя deploy:

- name: Change ssh key to ed25519
 authorized_key:
 user: deploy
 key: "{{ lookup('file', '~/.ssh/id_ed25519.pub') }}"
 exclusive: true

Следующие задачи обеспечат создание и настройку ключей хоста:

- name: Check the ed25519 host key
 stat:
 path: /etc/ssh/ssh_host_ed25519_key
 register: ed25519

- name: Generate ed25519 host key
 command: ssh-keygen -t ed25519 -f /etc/ssh/ssh_host_ed25519_key -N ""
 when:
 - not ed25519.stat.exists|bool
 notify: Restart sshd
 changed_when: true

- name: Set permissions
 file:
 path: /etc/ssh/ssh_host_ed25519_key

https://oreil.ly/7KzzL

398    Глава 20. Ускорение работы Ansible

 mode: '0600'

- name: Configure ed25519 host key
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: '^HostKey /etc/ssh/ssh_host_ed25519_key'
 line: 'HostKey /etc/ssh/ssh_host_ed25519_key'
 insertbefore: '^# HostKey /etc/ssh/ssh_host_rsa_key'
 mode: '0600'
 state: present
 notify: Restart sshd

Бас также проверяет соответствие конфигурации его сервера SSH с
конфигурацией клиента, поэтому первый этап согласования при уста-
новке соединения происходит с использованием совместимых алго-
ритмов для обеих сторон. Оптимизация конфигурационных парамет
ров на клиенте не так сильно повышает производительность, как на
стороне сервера, потому что эти файлы читаются перед установкой
каждого соединения SSH.

Конвейерный режим
Вспомним, как Ansible выполняет задачу:

•	 генерирует сценарий на Python, основанный на вызываемом мо-
дуле,

•	 копирует его на хост,
•	 запускает его там.

Ansible поддерживает прием оптимизации – конвейерный режим, –
объединяя открытие сеанса SSH с запуском сценария на Python. Кон-
вейерный режим, если поддерживается плагином connection, уменьшает
количество сетевых операций, выполняя множество модулей Ansible
без фактического копирования файлов. Ansible выполняет сценарии на
Python, объединяя их в сеансе SSH. Экономия достигается за счет того,
что в этом случае требуется открыть только один сеанс SSH вместо двух.

Включение конвейерного режима
По умолчанию конвейерный режим не используется, потому что тре-

бует настройки удаленных хостов, но нам нравится использовать его,
поскольку он ускоряет процесс. Чтобы включить этот режим, внесите
изменения в файл ansible.cfg, как показано в примере 20.3.

Пример 20.3. ansible.cfg, включение конвейерного режима

[connection]
pipelining = True

Конвейерный режим    399

Настройка хостов для поддержки конвейерного
режима
Для поддержки конвейерного режима необходимо убедиться, что на

хостах в файле /etc/sudoers выключен параметр requiretty. Иначе при
выполнении сценария вы будете получать ошибки, как показано в
примере 20.4.

Пример 20.4. Ошибка при включенном параметре requiretty

failed: [centos] ==> {"failed": true, "parsed": false}
invalid output was: sudo: sorry, you must have a tty to run sudo

Если утилита sudo на хостах настроена на чтение файлов из каталога
/etc/sudoers.d, тогда самое простое решение – добавить файл конфигу-
рации sudoers, выключающий ограничение requiretty для пользователя,
с именем которого вы устанавливаете SSH-соединения.

Если каталог /etc/sudoers.d существует, хосты должны поддерживать
добавление файлов конфигурации sudoers. Проверить наличие каталога
можно с помощью утилиты ansible:

$ ansible vagrant -a «file /etc/sudoers.d»

Если каталог имеется, вы увидите примерно такие строки:

centos | CHANGED | rc=0 >>
/etc/sudoers.d: directory
ubuntu | CHANGED | rc=0 >>
/etc/sudoers.d: directory
fedora | CHANGED | rc=0 >>
/etc/sudoers.d: directory
debian | CHANGED | rc=0 >>
/etc/sudoers.d: directory

Если каталог отсутствует, то вы увидите:

vagrant3 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)
vagrant2 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)
vagrant1 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d" (No such file or
directory)

Если каталог имеется, создайте файл шаблона, как показано в при-
мере 20.5.

400    Глава 20. Ускорение работы Ansible

Пример 20.5. templates/disable-requiretty.j2

Defaults:{{ ansible_user }} !requiretty

Затем запустите сценарий, приведенный в примере 20.6, заменив
vagrant именами ваших хостов. Не забудьте выключить конвейерный
режим, прежде чем сделать это, иначе сценарий завершится с ошибкой.

Пример 20.6. disable-requiretty.yml

- name: Do not require tty for ssh-ing user
 hosts: vagrant
 become: true

 tasks:
 - name: Set a sudoers file to disable tty
 template:
 src: disable-requiretty.j2
 dest: /etc/sudoers.d/disable-requiretty
 owner: root
 group: root
 mode: '0440'
 validate: 'bash -c "cat /etc/sudoers /etc/sudoers.d/* %s | visudo -cf-"'
...

Проверка достоверности файлов
Модули copy и template поддерживают выражение validate. Оно позволяет ука-
зать программу для проверки файла, сгенерированного системой Ansible.
Используйте %s вместо имени файла. Например:

validate: 'bash -c "cat /etc/sudoers /etc/sudoers.d/* %s|visudo -cf-"'

При наличии выражения validate Ansible скопирует файл сначала во вре-
менный каталог, а потом запустит указанную программу проверки. Если
программа завершится успешно (0), то Ansible скопирует файл из времен-
ного каталога в постоянное местоположение. Если программа вернет ре-
зультат, отличный от нуля, то Ansible выведет сообщение об ошибке:

SSH | 367
failed: [myhost] ==> {"checksum": "ac32f572f0a670c3579ac2864cc3069ee8a19588",
"failed": true}
msg: failed to validate: rc:1 error:
FATAL: all hosts have already failed -- aborting

Поскольку ошибки в файлах sudoers и в файлах, созданных в /etc/sudoers.d,
могут нарушить доступ к привилегиям пользователя root, их всегда полезно
проверить с помощью программы visudo. Для понимания проблем, которые
несут файлы sudoers, мы рекомендуем прочитать статью участника проекта
Ansible Жан-Пита Мэна (Jan-Piet Men) «Don't try this at the office: /etc/sudo-
ers» (https://oreil.ly/B9H0n).

https://oreil.ly/B9H0n

Кеширование фактов    401

Mitogen для Ansible
Mitogen – это сторонняя библиотека для Python, используемая для раз-
работки распределенных самокопирующихся программ. Mitogen для
Ansible – это совершенно новый механизм передачи и выполнения мо-
дулей в UNIX для Ansible. Он требует минимум настроек и замещает
медленную и расточительную реализацию Ansible на основе команд-
ной оболочки эквивалентами на Python, использующими высокоэф-
фективные вызовы удаленных процедур, туннелируемые через SSH.

Обратите внимание, что на момент написания этих строк библиотека
Mitogen поддерживала только Ansible 2.9; более поздние версии не под-
держивались. На целевых хостах никаких изменений вносить не требу-
ется, но на управляющей машине Ansible нужно установить библиотеку
Mitogen:

$ pip3 install --user mitogen

Вот как выглядит настройка использования Mitogen в виде плагина
стратегии в файле ansible.cfg:

[defaults]
strategy_plugins = /path/to/strategy
strategy = mitogen_linear
Fact Caching

Кеширование фактов
Факты о серверах содержат все переменные, какие только могут приго-
диться в сценарии Ansible. Сбор фактов производится в самом начале
выполнения сценария и требует времени, поэтому это еще один кан-
дидат на оптимизацию. Один из вариантов – создать локальный кеш с
фактами; другой – вообще отключить сбор фактов.

Если операция не использует факты Ansible, то их сбор можно отклю-
чить с помощью выражения gather_facts. Например:

- name: An example play that doesn't need facts
 hosts: myhosts
 gather_facts: false
 tasks:
 # здесь находятся задачи:

Также можно отключить сбор фактов по умолчанию, добавив в файл
ansible.cfg:

[defaults]
gathering = explicit

Если есть операции, использующие факты, их сбор можно организо-
вать так, что Ansible будет делать это для каждого хоста только однажды,

402    Глава 20. Ускорение работы Ansible

даже если этот же или другой сценарий будет запускаться неоднократно
для того же самого хоста.

Если кеширование фактов включено, Ansible сохранит факты в кеше,
полученные после первого подключения к хостам. В последующих по-
пытках выполнить сценарий Ansible будет извлекать факты из кеша, не
обращаясь к удаленным хостам. Такое положение вещей сохраняется до
истечения времени хранения кеша.

В примере 20.7 приводятся строки, которые необходимо добавить
в файл ansible.cfg для включения кеширования фактов. Значение fact_
caching_timeout выражается в секундах, в примере используется тайм-аут,
равный 24 ч (86 400 с).

Как это всегда бывает с решениями, использующими кеши-
рование, существует опасность, что кешированные данные
окажутся неактуальными. Некоторые факты, такие как архи-
тектура CPU (факт ansible_architecture), редко изменяются. Дру-
гие, такие как дата и время, сообщаемые машиной (факт ansi-
ble_date_time), гарантированно изменяются очень часто.

Если вы решили включить кеширование фактов, то обязательно про-
верьте, как часто изменяются факты, используемые вашим сценарием,
и задайте соответствующее значение тайм-аута кеширования. Чтобы
очистить кеш перед запуском сценария, передайте утилите ansible-play-
book параметр --flush-cache.

Пример 20.7. ansible.cfg. Включение кеширования фактов

[defaults]
gathering = smart
кеш остается действительным 24 часа, измените, если необходимо
fact_caching_timeout = 86400
Обязательно укажите реализацию кеширования фактов
fact_caching = ...

Значение smart в параметре gathering сообщает, что необходимо ис-
пользовать интеллектуальный сбор фактов (smart gathering). То есть
Ansible будет собирать факты, только если они отсутствуют в кеше или
срок хранения кеша истек. Механизм кеширования базируется на пла-
гинах, и список этих плагинов можно получить командой:

$ ansible-doc -t cache -l

Необходимо явно указать реализацию кеширования fact_caching в
ansible.cfg, иначе кеширование не будет использоваться. На момент на-
писания книги имелись три реализации:

Кеширование фактов    403

•	 в файлах JSON, YAML, Pickle;
•	 в оперативной памяти (недолговечное хранилище);
•	 в базах данных NoSQL: Redis, Memcached, MongoDB.

На практике чаще всего используется кеширование в Redis.

Если вы собираетесь использовать кеширование фактов, убе-
дитесь, что в сценариях отсутствует выражение gather_facts:
true или gather_facts: false. Когда включен режим интеллек-
туального сбора фактов, факты будут собираться, только если
они отсутствуют в кеше.

Кеширование фактов в файлах JSON
Реализация кеширования фактов в файлах JSON записывает собран-

ные факты в файлы на управляющей машине. Если файлы присутству-
ют в вашей системе, Ansible будет использовать их вместо соединений
с хостами.

Чтобы задействовать реализацию кеширования фактов в файлах JSON,
добавьте в файл ansible.cfg настройки, как показано в примере 20.8.

Пример 20.8. ansible.cfg, включение кеширования фактов в файлах JSON

[defaults]
gathering = smart
кеш остается действительным 24 часа, измените, если необходимо
fact_caching_timeout = 86400
кешировать в файлах JSON
fact_caching = jsonfile
fact_caching_connection = /tmp/ansible_fact_cache

Параметр fact_caching_connection определяет каталог, куда Ansible будет
сохранять файлы JSON с фактами. Если каталог отсутствует, Ansible соз-
даст его.

Для определения тайм-аута кеширования Ansible использует время
модификации файла. Вариант кеширования с использованием файлов
JSON – самый простой, но имеет ограниченное применение в много-
пользовательских окружениях или когда имеется несколько управляю-
щих машин из-за сложностей с назначением прав доступа к этим фай-
лам или выбором их местоположения.

Кеширование фактов в Redis
Redis – популярное хранилище данных типа ключ/значение, часто

используемое в качестве кеша. Для кеширования фактов в Redis необ-
ходимо:

404    Глава 20. Ускорение работы Ansible

1)	 установить Redis на управляющей машине,
2)	 убедиться, что служба Redis запущена на управляющей машине,
3)	 установить пакет Redis для Python,
4)	 включить кеширование в Redis в файле ansible.cfg.

В примере 20.9 показано, какие настройки следует добавить в ansible.
cfg, чтобы организовать кеширование в Redis.

Пример 20.9. ansible.cfg, кеширование фактов в Redis

[defaults]
gathering = smart
кеш остается действительным 24 часа, измените, если необходимо
fact_caching_timeout = 86400

fact_caching = redis

Для работы с хранилищем Redis требуется установить пакет Redis для
Python на управляющей машине, например с помощью pip1:

$ pip install redis

Вы также должны установить программное обеспечение Redis и за-
пустить его на управляющей машине. В macOS Redis можно установить
с помощью диспетчера пакетов Homebrew. В Linux это можно сделать с
помощью системного диспетчера пакетов.

Кеширование фактов в Memcached
Memcached – еще одно популярное хранилище данных типа ключ/

значение, которое также часто используется в качестве кеша. Для ке-
ширования фактов в Memcached необходимо:

1)	 установить Memcached на управляющей машине,
2)	 убедиться, что служба Memcached запущена на управляющей ма-

шине,
3)	 установить пакет Memcached для Python,
4)	 включить кеширование в Memcached в файле ansible.cfg.

В примере 20.10 показано, какие настройки следует добавить в ansible.
cfg, чтобы организовать кеширование в Memcached.

Пример 20.10. ansible.cfg, кеширование фактов в Memcached

[defaults]
gathering = smart
кеш остается действительным 24 часа, измените, если необходимо

1	 Может потребоваться выполнить команду sudo или активировать virtualenv, в зависимости от
способа установки Ansible на управляющей машине.

Параллелизм    405

fact_caching_timeout = 86400
fact_caching = memcached

Для работы с хранилищем Memcached требуется установить пакет
Memcached для Python на управляющей машине, например с помо
щью pip. Может потребоваться выполнить команду sudo или активиро-
вать virtualenv, в зависимости от способа установки Ansible на управ-
ляющей машине.

$ pip install python-memcached

Вы также должны установить программное обеспечение Memcached
и запустить его на управляющей машине. В macOS Memcached можно
установить с помощью диспетчера пакетов Homebrew. В Linux это мож-
но сделать с помощью системного диспетчера пакетов.

Более полную информацию о кешировании фактов можно найти в
официальной документации.

Параллелизм
Для каждой задачи Ansible устанавливает соединения сразу с несколь-
кими хостами и запускает на них одну и ту же задачу параллельно. Од-
нако Ansible необязательно будет устанавливать соединения сразу со
всеми хостами – уровень параллелизма контролируется параметром
со значением по умолчанию, равным 5. Изменить его можно одним из
двух способов .

Можно настроить переменную окружения ANSIBLE_FORKS, как это пока-
зано в примере 20.11.

Пример 20.11. Настройка ANSIBLE_FORKS

$ export ANSIBLE_FORKS=8
$ ansible-playbook playbook.yml

Можно также изменить настройки в конфигурационном файле
Ansible (ansible.cfg), определив параметр forks в секции default, как пока-
зано в примере 20.12. Бас считает, что существует прямая связь между
количеством ядер процессора на управляющей машине Ansible и оп-
тимальным значением forks: если задать слишком большое число, то
затраты на переключение контекста превзойдут выгоды от параллель-
ного выполнения задач. Я устанавливаю значение 8 на моей 8-ядерной
машине. Немаловажную роль играет также объем доступной оператив-
ной памяти на управляющей машине. Чем больше экземпляров задачи
выполняется параллельно, тем больше памяти требуется управляюще-
му процессу. В промышленных окружениях обычно используются зна-
чения от 25 до 50, которые, конечно же, зависят еще и от общего числа
хостов.

406    Глава 20. Ускорение работы Ansible

Пример 20.12. ansible.cfg. Настройка параллелизма

[defaults]
forks = 8

Асинхронное выполнение задач с помощью async
В Ansible появилось новое выражение async, позволяющее выполнять
асинхронные действия и обходить проблемы с тайм-аутами SSH. Если
время выполнения задачи превышает тайм-аут SSH, то Ansible закроет
соединение с хостом и сообщит об ошибке. Если добавить в определе-
ние такой задачи выражение async, это устранит риск истечения тайм-
аута SSH.

Однако механизм поддержки асинхронных действий можно также
использовать для других целей, например чтобы запустить вторую за-
дачу до завершения первой. Это может пригодиться, например, если
обе задачи выполняются очень долго и не зависят друг от друга (т. е. нет
нужды ждать, пока завершится первая, чтобы запустить вторую).

В примере 20.13 показан список задач, в котором имеется задача с
выражением async, выполняющая клонирование большого репозитория
Git. Так как задача отмечена как асинхронная, Ansible не будет ждать
завершения клонирования репозитория и продолжит установку си-
стемных пакетов.

Пример 20.13. Использование async для параллельного выполнения задач

- name: Install git
 become: true
 apt:
 name: git
 update_cache: true

- name: Clone Linus's git repo
 git:
 repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
 dest: /home/vagrant/linux
 async: 3600 
 poll: 0 
 register: linux_clone 

- name: Install several packages
 apt:
 name:
 - apt-transport-https
 - ca-certificates
 - linux-image-extra-virtual
 - software-properties-common

Заключение    407

 - python-pip
 become: true

- name: Wait for linux clone to complete
 async_status: 
 jid: "{{ linux_clone.ansible_job_id }}" 
 register: result
 until: result.finished 
 retries: 3600

	 Задача объявляется асинхронной и что она должна выполняться
не дольше 3600 с. Если время выполнения задачи превысит это
значение, Ansible автоматически завершит процесс, связанный с
задачей.

	 Значение 0 в аргументе poll сообщает системе Ansible, что она
может сразу перейти к следующей задаче после запуска этой.
Если указать ненулевое значение, то Ansible не сможет перейти
к следующей задаче. Вместо этого она периодически будет опра-
шивать состояние асинхронной задачи, ожидая ее завершения,
приостанавливаясь между проверками на интервал времени,
указанный в параметре poll (в секундах).

	 Когда имеется асинхронная задача, необходимо добавить выра-
жение register, чтобы захватить результат ее выполнения. Объект
result содержит значение ansible_job_id, которое можно использо-
вать позднее для проверки состояния задания.

	 Для опроса состояния асинхронного задания используется мо-
дуль async_status.

	 Для идентификации асинхронного задания необходимо указать
значение jid.

	 Модуль async_status выполняет опрос только один раз. Чтобы про-
должить опрос до завершения задания, нужно указать выражение
until и определить значение retries максимального числа попы-
ток.

Заключение
Теперь вы знаете, как настроить мультиплексирование SSH, конвейер-
ный режим, кеширование фактов, а также параллельное и асинхронное
выполнения задач, чтобы ускорить выполнение сценария. Далее мы об-
судим сетевые возможности Ansible и безопасность.

Глава 21
Сети и безопасность

Управление сетевыми устройствами
Управление сетевыми устройствами и их настройка всегда вызывает
у нас ностальгические чувства. Вход с консоли через telnet, ввод не-
скольких команд, сохранение конфигурации – и работа сделана. Дол-
гое время мы использовали две основные стратегии управления сете-
выми устройствами:

•	 приобретение дорогостоящего патентованного программного
обеспечения для настройки этих устройств;

•	 разработку минималистского набора инструментов для управле-
ния конфигурационными файлами: копирования файлов в ло-
кальную систему, внесения некоторых изменений путем редак-
тирования и копирования их обратно в устройство.

Однако в последние несколько лет ситуация стала заметно менять-
ся. Первое, что мы заметили, – производители сетевых устройств стали
создавать или открывать свои API. Во-вторых, так называемое движе-
ние DevOps не остановилось и продолжило спуск по стеку к ядру: ап-
паратные серверы, балансировщики нагрузки, устройства защиты се-
тей, сетевые устройства и даже роутеры. Начиная с версии Ansible 2.5,
компания Red Hat стала координировать применение Ansible для ав-
томатизации управления сетевыми устройствами. Между версиями 2.5
и 2.9 основное внимание уделялось развитию сетевых модулей. Но за-
тем из-за сложности поддержки от этой идеи отказались в пользу кол-
лекций. По итогам обсуждения, как отмечается в блоге JP Mens (https://
oreil.ly/DizNw), было решено (https://oreil.ly/MW1Ie) основной команде Ansible
сосредоточиться на развитии ядра ansible-core, создание сертифициро-
ванного контента делегировать партнерам Red Hat, а все остальное –
сообществу. Производители сетевого оборудования поддержали эту
тенденцию, так как она дает им возможность выпускать такой контент
независимо.

https://oreil.ly/DizNw
https://oreil.ly/DizNw
https://oreil.ly/MW1Ie

Управление сетевыми устройствами    409

Список поддерживаемых производителей
сетевого оборудования
Первый вопрос, который вы, скорее всего, зададите: «Поддерживается

ли выбранный мной производитель сетевого оборудования или опера-
ционной системы?» Список коллекций, предлагаемых производителя-
ми, длинный и очень динамичный, чтобы приводить его в книге, но же-
лающие смогут найти его по адресу https://oreil.ly/CEHsD. Пространство имен
Community содержит большое количество инструментов, разработанных
независимо от производителей. Кроме того, ansible.netcommon предлагает
абстракции, которые можно использовать с разными поставщиками, что
также означает их согласованность и продуманность (и это здорово). Вот
неполный список производителей, предлагающих свои коллекции:

•	 Arista (https://oreil.ly/AsBf2);
•	 Checkpoint (https://oreil.ly/sLvpl);
•	 Cisco ACI (https://oreil.ly/TNOAT);
•	 Cisco Meraki (https://oreil.ly/gExAe);
•	 Cyberark (https://oreil.ly/vMQse);
•	 F5 Networks (https://oreil.ly/GcDFd);
•	 Fortinet (https://oreil.ly/R1sDM);
•	 IBM (https://oreil.ly/fiiWQ);
•	 Infoblox (https://oreil.ly/yCcpH);
•	 Juniper (https://oreil.ly/Js4de);
•	 Vyos (https://oreil.ly/MnTbI).

Некоторые из этих производителей предлагают виртуальные устрой-
ства для использования с Vagrant. Файл Vagrantfile для этой главы в ре-
позитории книги включает устройства junos, nxosv и vyos.

Старайтесь явно определять имена используемых модулей
автоматизации управления сетевыми устройствами из уста-
новленных коллекций. Указывайте полные имена этих моду-
лей, включающие имена коллекций, чтобы не возникло пу-
таницы с модулями, входящими в состав ядра Ansible. При
исследовании файлов задач или сценариев ищите имена
модулей с точками, такие как cisco.iosxr.iosxr_l2_interfaces.

Ansible Connection для автоматизации управления
сетевыми устройствами
Ansible позволяет управлять самыми разными сетевыми устройства-

ми, но есть некоторые отличия в управлении машинами с Windows, ma-

https://oreil.ly/CEHsD
https://oreil.ly/AsBf2
https://oreil.ly/sLvpl
https://oreil.ly/TNOAT
https://oreil.ly/gExAe
https://oreil.ly/vMQse
https://oreil.ly/GcDFd
https://oreil.ly/R1sDM
https://oreil.ly/fiiWQ
https://oreil.ly/yCcpH
https://oreil.ly/Js4de
https://oreil.ly/MnTbI

410    Глава 21. Сети и безопасность

cOS или Linux. Системы Linux повсеместно управляются через SSH, а
компьютерами Windows можно управлять через соединение WinRM. Из
других типов соединений, которые мы использовали до сих пор, можно
назвать local, docker и raw. Использование REST с модулем uri не поддер-
живается параметром ansible_connection, потому что это «соединение» не
позволяет использовать другие модули.

Поскольку сетевые устройства не поддерживают возможность выпол-
нения сценариев на Python, для управления ими нужна другая парадиг-
ма. Инструменты автоматизации работают на управляющей машине и
общаются с API сетевых устройств. В заголовке сценария автоматиза-
ции управления сетевыми устройствами обычно можно встретить та-
кую строку:

 hosts: localhost

Значение в ansible_connection на узле, управляющем устройством, зави-
сит от платформы и назначения используемых модулей. Транспортным
протоколом может служить SSH или HTTP/HTTPS. Соединения HTTPS
обычно используются для доступа к REST API, тогда как SSH позволяет
взаимодействовать с интерфейсом командной строки, как это делают
модули command и shell в «обычном» Ansible. XML через SSH применяется
для конфигурации сети (netconf). Чтобы использовать этот тип соедине-
ний, нужно установить библиотеку ncclient для Python.

Привилегированный режим
Некоторые сетевые устройства поддерживают разделение между

обычным пользовательским и привилегированным режимами, последний
из которых предусматривается для выполнения критически важных за-
дач и доступен через параметр ansible_become: true. Обратите внимание,
что здесь вместо утилиты sudo, известной нам в Linux, используется ме-
тод, который называется enable. Мы предпочитаем задавать параметр
become в начале задачи, прямо под ее именем, чтобы потом было проще
анализировать ее поведение.

Настраивать соединения Ansible для разных типов устройств можно
с помощью нескольких параметров. Естественный выбор для регистра-
ции этих параметров – блок vars в реестре. Помимо протокола соедине-
ния, системе Ansible нужно сообщить операционную систему сетевого
устройства, как показано в файле реестра в примере 21.1.

Пример 21.1. playbooks/inventory/hosts
[arista:vars]
https://galaxy.ansible.com/arista/eos
ansible_connection=ansible.netcommon.httpapi
ansible_network_os=arista.eos.eos

Управление сетевыми устройствами    411

ansible_become_method=enable

[cisco:vars]
https://galaxy.ansible.com/cisco/ios
ansible_connection=ansible.netcommon.network_cli
ansible_network_os=cisco.ios.ios
ansible_become_method=enable

[junos:vars]
https://galaxy.ansible.com/junipernetworks/junos
ansible_connection=ansible.netcommon.netconf
ansible_network_os=junipernetworks.junos.junos
ansible_become_method=enable

Реестр сетевых устройств
Мы предпочитаем определять файлы реестров и динамические

реестры для облачных окружений и Vagrant в простом формате INI, од-
нако формат YAML лучше подходит для определения реестров крупных
и иерархических сетевых топологий (пример 21.2). Лучшей практикой
в моделировании является определение ответов на основные вопросы:
что это такое? где это? кому принадлежит? и когда пройдут этапы раз-
работки, тестирования, пилотного проекта, обкатки и передачи в про-
изводство?

Пример 21.2. Реестр в формате YAML

backbone:
 hosts:
 rt_dc1_noc_p:
 ansible_host: 10.31.1.1
 vars:
 ansible_connection: ansible.netcommon.network_cli
 ansible_network_os: cisco.ios.ios
 ansible_become_method: enable

perimeter:
 hosts:
 proxy_dc1_soc_p:
 ansible_host: 10.31.2.1
 vars:
 ansible_become_method: sudo

network:
 children:
 backbone:
 perimeter:

412    Глава 21. Сети и безопасность

С помощью следующей команды можно представить реестр в виде
графика, чтобы оценить его:

ansible-inventory -i inventory/hosts.yml --graph

Примеры использования автоматизации
управления сетевыми устройствами
Распространенное мнение, что для проектирования долговечной

инфраструктуры корпоративной сети достаточно создать тщательно
проработанную схему, было опровергнуто в последние десятилетия
общей энтропией: вы легко сможете назвать несколько противников
стабильности, поразмышляв о развитии ИТ, разрушительной конку-
ренции, глобальных кризисах и нестабильности рынка. Организации
должны быстро адаптироваться к меняющимся условиям, а это подра-
зумевает изменения – постоянные изменения – и гибкость.

Идея о том, что многофункциональные команды могут работать ав-
тономно и достигать бизнес-целей, используя собственные облачные
технологии, приобретаемые независимо, беспокоит сетевые центры
и центры управления безопасностью (мягко говоря). Ansible способна
анализировать состояние всех устройств и хостов и собирать факты, не-
обходимые для управления конфигурацией и предоставления информа-
ции о текущей ситуации. Она может настраивать устройства, автомати-
зировать обновления и проверять, как работают все устройства. В целом
механизм автоматизации управления сетевыми устройствами в Ansible –
это большой шаг вперед по сравнению с настройкой устройств вручную.

Безопасность
Каждая организация предъявляет свои уникальные требования к без
опасности. Существует несколько базовых уровней безопасности, таких
как CIS (https://oreil.ly/4oGAp), DISA-STIG (https://oreil.ly/UQ3f0), PCI (https://oreil.ly/
eM8aP), HIPAA (https://oreil.ly/CVYED), NIST (https://oreil.ly/mq03N) и FedRAMP (https://
www.fedramp.gov/), применяемых в различных отраслях в США, включая пла-
тежные карты, здравоохранение, федеральное правительство и оборон-
ные производства. В Европе существуют свои национальные институты,
такие как BSI Germany (https://oreil.ly/jyRtY), BSI UK (https://oreil.ly/RNXOj) и NCSC
(https://oreil.ly/pBdtI), публикующие рекомендации по защите компьюте-
ров и их сетевых соединений. Если ваше правительство не определило
стандарт безопасности, то вы можете ознакомиться с примерами, пред-
ставленными фондами программного обеспечения, такими как Mozilla
(https://oreil.ly/vzWsX).

Еще до того, как Red Hat купила Ansible, Inc., существовала воз-
можность обеспечить соблюдение определенных базовых стандартов

https://oreil.ly/4oGAp
https://oreil.ly/UQ3f0
https://oreil.ly/eM8aP
https://oreil.ly/eM8aP
https://oreil.ly/CVYED
https://oreil.ly/mq03N
https://www.fedramp.gov/
https://www.fedramp.gov/
https://oreil.ly/jyRtY
https://oreil.ly/RNXOj
https://oreil.ly/pBdtI
https://oreil.ly/vzWsX

Безопасность    413

безопасности. В 2015 году Ansible, Inc. поручила координацию проекта
ansible-lockdown (https://oreil.ly/0lzC8) с открытым исходным кодом компании
MindPointGroup1, специализирующейся на решениях безопасности.
С тех пор много воды утекло. Этот контент частично переместился из
PDF-документов и электронных таблиц в сценарии Ansible. И теперь ав-
томатизация безопасности стала одной из областей, в которой Ansible
набирает силу.

Применение Ansible для настройки безопасности таких систем, как
сетевые устройства, кластеры и хосты, кажется отличной идеей. Разде-
ление задач – один из принципов теории управления, поэтому на прак-
тике вам потребуется инструмент сканирования для оценки уровня за-
щиты на основе выбранного профиля безопасности.

Центр интернет-безопасности (Center for Internet Security) поддер-
живает эталонные тесты проверки защищенности для широкого спек-
тра операционных систем и промежуточного программного обеспече-
ния, которые детально исследуют конфигурации. Существуют сканеры
безопасности, распространяемые на коммерческой основе. OpenSCAP
(https://oreil.ly/l4EiB) бесплатно публикует руководство по безопасности
(https://oreil.ly/3oMj6), изучив которое вы сможете выбрать профиль, подхо-
дящий для вашей отрасли, чтобы тщательно просканировать системы
RHEL и проверить их соответствие требованиям. Знаете ли вы, что мож-
но даже сгенерировать сценарий Ansible, поддерживаемый Red Hat, для
устранения отклонений? (Это действительно круто!) На GitHub можно
найти и другие проекты по усилению защиты от независимых разра-
ботчиков, например DevSec Project (https://dev-sec.io/project) из Германии.

Соблюдение требований соответствия
Однако, даже имея эти инструменты, остается нерешенным вопрос,

заданный Томпсоном (Thompson): кому доверять2? Углубившись в де-
тали, можно обнаружить еще больше вопросов. следует ли доверять ру-
ководству по настройке безопасности с помощью Ansible больше, чем
результатам сканирования производителя? Можно ли утверждать, что
соответствие требованиям равно безопасности? Ограничивают ли на-
циональные стандарты круг криптографических методов для примене-
ния в вашей стране (https://oreil.ly/68zJp)? Как влияют на ваши решения в
области безопасности методы слежения, обнаружения вторжений, вы-
явления вредоносных программ, законодательство об интеллектуаль-
ной собственности, гражданских правах, трудовых отношениях, а также
профсоюзы и политика? Мешают ли проблемы с кибербезопасностью
1	 Бас в течение некоторого времени занимался реализацией стандартов CIS (https://oreil.ly/mAxJw)

и DISA-STIG (https://oreil.ly/EgDNP).
2	 Кен Томпсон (Ken Thompson). Reflections on Trusting Trust (https://oreil.ly/f52cw). Communications of

the ACM 27. № 8 (август 1984 г.).

https://oreil.ly/0lzC8
https://oreil.ly/l4EiB
https://oreil.ly/3oMj6
https://dev-sec.io/project
https://oreil.ly/68zJp
https://oreil.ly/mAxJw
https://oreil.ly/EgDNP
https://oreil.ly/f52cw

414    Глава 21. Сети и безопасность

вашей организации достичь своих целей? Насколько хорошо обеспечи-
вается тайна личной переписки?

На использование интернета и криптографии в современных ИТ-ар-
хитектурах влияет несколько факторов. В прокси-серверах широко ис-
пользуется проверка SSL, чтобы избежать заражения ПК вредоносными
программами. Такая проверка позволяет администраторам наблюдать
за трафиком, исходящим из веб-браузеров в компании на веб-сай-
ты, и ограничивать его. Во избежание юридических последствий эти
прокси-серверы поддерживают списки доверенных и ненадежных ка-
тегорий сайтов. Прокси-серверы могут ограничивать использование
интернета сотрудниками с добрыми намерениями, но проблемы с без-
опасностью могут исходить и от программного обеспечения. Имейте в
виду, что проверка на стороне прокси-сервера может помочь предот-
вратить проникновение вирусов и программ-вымогателей в корпора-
тивную сеть, но она может также препятствовать процессу разработки
и внедрения инноваций.

Также рекомендуется создать прокси-сервер для библиотек про-
граммного обеспечения, чтобы упростить цепочку поставок для про-
граммистов. В главе 23 мы рассмотрим пример создания такого прокси
с помощью Sonatype Nexus. Веб-трафик как бизнес-пользователей, так
и ИТ-персонала должен регулироваться политикой, исключающей ис-
пользование закрытых каналов.

Защищено, но не безопасно
Пример для этой главы создает виртуальную машину Vagrant с име-

нем ansiblebook/Bastion (https://oreil.ly/ajtGQ), защищенную в соответствии с
профилем защиты операционной системы (Operating System Protection
Profile, OSPP) для RHEL 8.

Этот конфигурационный профиль соответствует стандарту
CNSSI-1253, который требует, чтобы системы национальной без-
опасности США придерживались определенных конфигурационных
параметров. Соответственно, этот профиль подходит для исполь-
зования в системах национальной безопасности США.

Значит ли, что эта защищенная машина находится в безопасности?
Конечно!

Роль ansible_role_ssh в примере может применять (настраиваемую) об-
щесистемную криптополитику. Роль ansible_role_ansible устанавливает
Python, необходимые зависимости, Ansible, коллекции и роли в эту за-
щищенную операционную систему. Она определяет ограничивающие
параметры монтирования томов, SELinux и fapolicyd.

Мы опубликовали эти две роли отдельно, чтобы вы могли использо-
вать их в других сценариях:

https://oreil.ly/ajtGQ

Безопасность    415

•	 ansible_role_ssh (https://oreil.ly/H3Ha6);
•	 ansible_role_ansible (https://oreil.ly/c9XmX).

В конфигурации запуска (пример 21.3) расширение org_fedora_oscap ис-
пользует профиль ospp, основанный на криптополитике FIPS. Крипто-
политика FIPS:OSPP еще больше ограничивает набор алгоритмов, чем
FIPS. В настоящее время FIPS исключает некоторые криптографические
алгоритмы, а правительственным учреждениям США предписано ис-
пользовать только определенный набор алгоритмов, проверенных на-
циональным институтом стандартов NIST.

Пример 21.3. packer-playbook.yml

- name: Provisioner
 hosts: all
 become: true
 gather_facts: true
 vars:
 crypto_policy: FIPS:OSPP
 intended_user: vagrant
 home_dir: "/home/{{ intended_user }}"
 pre_tasks:
 - name: Generate 4096 bits RSA key pair for SSH
 user:
 name: "{{ intended_user }}"
 generate_ssh_key: true
 ssh_key_bits: 4096

 - name: Fetch ssh keys
 fetch:
 flat: true
 src: "{{ home_dir }}/.ssh/{{ item }}"
 dest: files/
 mode: '0600'
 loop:
 - id_rsa
 - id_rsa.pub

 - name: Install authorized_keys from generated file
 authorized_key:
 user: "{{ intended_user }}"
 state: present
 key: "{{ lookup('file','files/id_rsa.pub') }}"
 exclusive: false

 - name: Fix auditd max_log_file_action

https://oreil.ly/H3Ha6
https://oreil.ly/c9XmX

416    Глава 21. Сети и безопасность

 lineinfile:
 path: /etc/audit/auditd.conf
 regexp: '^max_log_file_action'
 line: max_log_file_action = rotate
 state: present
 roles:
 - ansible_book_ssh
 - ansible_book_ansible

Машина ansiblebook/Bastion подготавливается с помощью Packer, и для
нее создается пара ключей с размером больше, чем принято в Vagrant
по умолчанию. Вы сможете запустить ее с Vagrant после загрузки этого
4096-битного ключа RSA; сохраните его в файле с именем, как указано
в Vagrantfile:

config.ssh.private_key_path = "./playbooks/files/id_rsa"

Сценарий Ansible, показанный в примере 21.4, проверит защищен-
ность машины и создаст отчет в папке Downloads.

Пример 21.4. vagrant-playbook.yml

- name: Security Audit
 hosts: bastion
 become: true
 gather_facts: true
 tasks:
 - name: 'Run the audit and create a report.'
 command:
 oscap xccdf eval \
 --report /tmp/report.html
 --profile ospp
 /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml
 no_log: true
 ignore_errors: true

 - name: 'Fetch the report.'
 fetch:
 flat: true
 src: /tmp/report.html
 dest: "~/Downloads/ospp.html"
...

Вы увидите, что машина успешно преодолевает 198 из 200 тестов
безопасности, что довольно хорошо! Она защищена.

Однако если запустить ssh-audit (https://oreil.ly/gepyo) в этой «защищен-
ной» системе, то вы увидите множество недостатков:

https://oreil.ly/gepyo

Безопасность    417

key exchange algorithms
(kex) ecdh-sha2-nistp256 -- [fail] using weak elliptic curves
(kex) ecdh-sha2-nistp384 -- [fail] using weak elliptic curves
(kex) ecdh-sha2-nistp521 -- [fail] using weak elliptic curves
host-key algorithms
(key) ecdsa-sha2-nistp256 -- [fail] using weak elliptic curves
 `- [warn] using weak random number generator could
 reveal the key
encryption algorithms (ciphers)
(enc) aes256-cbc -- [fail] removed (in server) since OpenSSH 6.7,
unsafe algorithm
 `- [warn] using weak cipher mode
(enc) aes128-cbc -- [fail] removed (in server) since OpenSSH 6.7,
unsafe algorithm
 `- [warn] using weak cipher mode
message authentication code algorithms
(mac) hmac-sha2-256 -- [warn] using encrypt-and-MAC mode
(mac) hmac-sha2-512 -- [warn] using encrypt-and-MAC mode

algorithm recommendations (for OpenSSH 8.0)
(rec) -aes128-cbc -- enc algorithm to remove
(rec) -aes256-cbc -- enc algorithm to remove
(rec) -ecdh-sha2-nistp256 -- kex algorithm to remove
(rec) -ecdh-sha2-nistp384 -- kex algorithm to remove
(rec) -ecdh-sha2-nistp521 -- kex algorithm to remove
(rec) -ecdsa-sha2-nistp256 -- key algorithm to remove
(rec) -hmac-sha2-256 -- mac algorithm to remove
(rec) -hmac-sha2-512 -- mac algorithm to remove

Подобные недостатки можно найти в настройке OpenSSH 8 по умол-
чанию и в рекомендациях государств, одобряющих наблюдение за без-
опасностью систем. Вы можете использовать роль SSH со значением
по умолчанию crypto_policy: STRICT, чтобы использовать кривые ed25519.
Этот алгоритм быстрее и безопаснее, как доказали исследования тех-
нического университета Эйндховена (https://oreil.ly/Tz9u0). Использование
кривых ed25519 предлагается также для обновленной версии FIPS, но
документ FIPS 186-5 по-прежнему имеет статус «предварительный».
Криптополитика STRICT обеспечивает прохождение тестов ssh-audit. Об-
ратите внимание, что при этом ваша система может соответствовать
только базовому уровню безопасности со слабой криптографией.

Появление квантовых компьютеров может иметь серьезные послед-
ствия для организаций, обрабатывающих конфиденциальную инфор-
мацию: данные, зашифрованные с помощью популярных криптогра-
фических алгоритмов, возможно, уже были перехвачены и ожидают
расшифровки с помощью будущего квантового компьютера. В версии
OpenSSH 9 (https://oreil.ly/lZgN1) произошли существенные изменения; те-

https://oreil.ly/Tz9u0
https://oreil.ly/lZgN1

418    Глава 21. Сети и безопасность

перь она по умолчанию использует алгоритм NTRU и обмен ключами
X25519 ECDH, чтобы предотвратить эти последствия.

Теневые ИТ-ресурсы
Ваше устройство защищено или безопасно? Эффективны ли ваши меры

безопасности? Действуют ли ограничения политики неукоснительно,
или их можно обойти? А что можно сказать обо всех других устройствах
в вашей компании? Защищает ли ваша служба ИТ сетевую инфраструк-
туру, серверы, доступ к данным и ваши рабочие столы настолько строго,
что вы вынуждены отправлять файлы по электронной почте на свой
личный адрес, чтобы выполнить полезную работу? Приходится ли вам
обращаться к другим альтернативам? Корпоративное управление мо-
жет затормозить инновационные инициативы внедрением чрезмер-
ных процессов утверждения и аудитов рисков и соответствия, не говоря
уже о технических мерах безопасности, таких как защита конечных то-
чек, проверка SSL и изолированные окружения1. Сотрудники либо тра-
тят оплачиваемое время, чтобы преодолеть все эти ограничения, либо
создают теневые ИТ-ресурсы.

К теневым ИТ-ресурсам (Shadow IT) относятся любые вычислитель-
ные ресурсы, которые не закупаются и не предоставляются в рамках
корпоративного управления. Сюда входят личные ноутбуки, старые
ПК, спрятанные под столами, персональные облачные подписки, пер-
сональные серверы и т. д. Чтобы обойти конкурентов, некоторые кор-
порации даже создают совершенно новые компании с целью избежать
бюрократических проволочек, накопившихся за десятилетия. Если
центральное ИТ-подразделение поставляет системы, не соответствую-
щие ожиданиям разработчиков, то разработчики будут создавать свои
системы.

Солнечные ИТ-ресурсы
Наибольшую эффективность в создании современного программно-

го обеспечения показывают автономные команды, поддерживаемые
платформами, которые не снижают их продуктивность. Эти команды
обладают, если можно так выразиться, интеллектуальной автономией;
т. е. у них есть доступ к любой информации, API, AI, SaaS, IaaS, PaaS, ис-
ходному коду, библиотекам или инструментам, необходимым для вы-
полнения работы. Они могут организовать свою работу и общаться, со-
храняя строгую конфиденциальность. Со стратегической точки зрения
автономия – это явное конкурентное преимущество. Она может пошат-
нуть ваше положение в центральном ИТ-отделе, но все не так страшно!
1	 Келли Шортридж (Kelly Shortridge) опубликовала в своем блоге красноречивую статью (https://

oreil.ly/NCrp9) о таком обструкционизме безопасности.

https://oreil.ly/NCrp9
https://oreil.ly/NCrp9

Безопасность    419

Под термином солнечные ИТ-ресурсы (Sunshine IT) подразумевается
общая платформа, основанная на API с выходом в интернет, инфраструк-
туре самообслуживания и безопасной совместной работе, предоставля-
ющая командам возможности проявить себя. Наряду с бизнес-прило-
жениями стек технологий облегчает командам работу благодаря таким
элементам, как:

•	 программно определяемая инфраструктура: ориентированная на
приложения/облако;

•	 услуги платформы: CI/CD как услуга, контейнерные платформы;
•	 платформа интеграции: диспетчеры API/потоковой передачи со-

бытий / обмена сообщениями;
•	 технологический мониторинг.

Таким образом, внедрение солнечных ИТ-ресурсов вместо автоно-
мии способствует сотрудничеству между командами в организации, а
некоторые базовые элементы могут усилить автономные команды.

Нулевое доверие
Идея нулевого доверия (zero trust) – модный термин, придуманный

экспертом по безопасности Джоном Киндервагом (John Kindervag),
который утверждает, что традиционная модель безопасности основы-
вается на устаревшем предположении: все внутри сети организации,
с ее бастионами и брандмауэрами, защищающими периметр, должно
пользоваться безоговорочным доверием. Однако такое доверие озна-
чает отсутствие детальных элементов управления безопасностью, в ре-
зультате, оказавшись в сети, пользователи, в том числе и злоумышлен-
ники, могут свободно перемещаться в горизонтальном направлении,
получать доступ к конфиденциальным данным или извлекать их. Эта
модель потеряла свою актуальность в эпоху облачных и контейнерных
технологий. Продавцы предложат вам управление идентификацией,
явную проверку, автоматизацию, минимальные привилегии и другие
модные словечки, чтобы постараться продать побольше и подороже.
Просто укажите им на эту цитату из Киндервага1:

«Отличительной чертой нулевого доверия является простота. Ни-
какой пользователь, пакет, сетевой интерфейс и устройство не
должны пользоваться безграничным доверием. Если это прави-
ло соблюдается, то защита ресурсов становится простой. Чтобы
уменьшить сложность среды кибербезопасности, организации
могут отдавать приоритет технологиям и инструментам безопас-

1	 Джон Киндерваг (John Kindervag). «The Hallmark of Zero Trust Is Simplicity». Wall Street Journal,
15 апреля 2021 (https://oreil.ly/41KGi).

https://oreil.ly/41KGi

420    Глава 21. Сети и безопасность

ности, поддерживающим простоту, автоматизируя повторяющие-
ся и выполняемые вручную задачи, интегрируя несколько инстру-
ментов и систем безопасности и управляя ими, а также автомати-
чески устраняя известные уязвимости».

К настоящему времени появилось новое поколение программного
обеспечения для сетевой безопасности, которым можно управлять с
помощью простых приложений. Эти программные продукты позволя-
ют администраторам создавать группы доверенных пользователей, си-
стемы которых могут подключаться через ненадежные сети. Они пред-
лагают полный контроль за пользователями и кросс-платформенное
шифрование.

Заключение
Узнать больше об автоматизации сетевых устройств с помощью Ansible
можно в статьях «Network Getting Started» (https://oreil.ly/JLMz6) и «Network
Advanced Topics» (https://oreil.ly/1NvKm). Желающим поэкспериментировать
мы советуем установить роли и коллекции из примера 15.1. Также по-
сетите сайт советов Mozilla Foundation (https://oreil.ly/ViJ3a).

Автоматизация безопасности – это сфера использования Ansible, о
которой можно написать целую книгу, и нам очень повезло, что коман-
да Ansible опубликовала руководство «Security Automation» (https://oreil.ly/
JF7g6). В следующей главе мы продолжим тему автоматизации и рассмо-
трим применение Ansible для организации конвейера CI/CD.

https://oreil.ly/JLMz6
https://oreil.ly/1NvKm
https://oreil.ly/ViJ3a
https://oreil.ly/JF7g6
https://oreil.ly/JF7g6

Глава 22
CI/CD и Ansible

Роли – это основные компоненты, используемые для создания инфра
структуры как кода (Infrastructure as Code, IaC) с помощью Ansible.
Отношение к системному администрированию как к разработке про-
граммного обеспечения и применение методов разработки к IaC – одна
из основ методологии гибкой разработки. Тестируя изменения в про-
граммных окружениях и автоматизируя контроль за изменениями,
можно уменьшить количество ошибок, повысить продуктивность и
сократить периоды простоя. Оценивая качество кода и автоматически
выполняя тесты в изолированных окружениях, можно устранять ошиб-
ки на самых ранних этапах, до того, как они просочатся в промышлен-
ное окружение.

В этой главе описывается, как настроить основу среды непрерыв-
ной интеграции и непрерывной доставки (Continuous Integration/
Continuous Delivery, CI/CD) программного обеспечения, состоящую из
прокси-сервера центрального репозитория для двоичных файлов и
библиотек, системы управления исходным кодом, инструмента контро-
ля качества кода и сервера непрерывной интеграции. В примере, кото-
рый мы рассмотрим далее, представлены четыре виртуальные машины
с Sonatype Nexus3, Gitea, SonarQube и Jenkins. Jenkins может использо-
вать специальные команды и сценарии Ansible через плагин Ansible.
Плагин Ansible Tower для Jenkins позволяет получить доступ к платфор-
ме автоматизации Ansible (известной как Tower) для выполнения раз-
личных операций, таких как запуск шаблонов заданий.

Непрерывная интеграция
В 2006 году Мартин Фаулер (Martin Fowler) опубликовал важную статью
о непрерывной интеграции (https://oreil.ly/AO3QV), описывающую успешную
практику разработки программного обеспечения следующим образом:

«Практика разработки программного обеспечения, когда члены
команды достаточно часто интегрируют результаты своего труда
(например, каждый интегрирует свой код по меньшей мере еже-

https://oreil.ly/AO3QV

422    Глава 22. CI/CD и Ansible

дневно), приводит к выполнению большого количества интегра-
ций в течение дня. Каждая интеграция проверяется автоматизиро-
ванной сборкой (и тестированием), чтобы как можно раньше обна-
ружить ошибки интеграции. Многие команды считают, что такой
подход значительно сокращает проблемы интеграции и позволяет
команде быстрее разрабатывать программное обеспечение».

Эти методы часто незаменимы, когда требуется доставлять програм
мное обеспечение надежным и воспроизводимым способом. Как вы-
разился Фаулер, «каждый должен иметь возможность подключить
девственно чистую машину, проверить исходный код из репозитория,
выполнить единственную команду и получить работающую систему на
своей машине».

В настоящее время появились еще более серьезные проблемы: боль-
шинство современных систем настолько сложны, что для работы им
требуется несколько машин, а их инфраструктура, управление конфи-
гурацией, системные операции, обеспечение безопасности и соответ-
ствия стандартам часто находятся в коде.

Разработчики хранят весь этот код в системе управления версиями и
выполняют различные задачи на серверах интеграции, благодаря чему
имеют возможность протестировать этот код и безопасно сохранить в
репозитории, чтобы развернуть его, когда все будет готово к выпуску.
Проще говоря, все это желательно автоматизировать.

Элементы системы непрерывной интеграции
Хранение всего необходимого в системе управления версиями (Ver-

sion Control System, VCS) является важным условием для непрерывной
интеграции (CI). Существует два типа VCS: для текстовых данных, таких
как исходный код любого типа, и хранилища артефактов для двоичных
данных, таких как пакеты программного обеспечения любого типа.

Репозиторий артефактов
Самыми популярными хранилищами артефактов являются, пожалуй,

JFrog Artifactory и Sonatype Nexus. Пример кода, прилагаемый к этой
книге, развертывает Nexus как прокси для библиотек Python. Nexus –
это программа на Java, и для ее развертывания достаточно очень про-
стого сценария:

#!/usr/bin/env ansible-playbook

- name: Artefact Repository
 hosts: nexus
 become: true
 roles:

Непрерывная интеграция    423

 - role: java
 tags: java
 - role: nexus
 tags: nexus

У нас есть реестр с группой под названием nexus и соответствующим
сервером в ней. Для этого проекта вы можете создать реестр с четырьмя
серверами по своему выбору; он многоразовый. Роли устанавливаются
из Ansible Galaxy с помощью файла roles/requirements.yml:

roles:
 - src: ansible-thoteam.nexus3-oss
 name: nexus
 - src: geerlingguy.java
 name: java

Далее создадим group_vars/nexus. Для этого примера мы определили
простые конфигурационные параметры, как показано ниже:

nexus_config_pypi: true
nexus_config_docker: true
nexus_admin_password: 'changeme'
nexus_anonymous_access: true
nexus_public_hostname: "{{ ansible_fqdn }}"
nexus_public_scheme: http
httpd_setup_enable: false

Nexus имеет множество конфигурационных параметров и поддержи-
вает сценарии.

Gitea
Для управления версиями исходного кода в настоящее время наибо-

лее широко используется Git. В числе известных репозиториев, исполь-
зующих эту систему, можно назвать GitHub (https://github.com/), Atlassian Bit-
Bucket (https://bitbucket.org/) и GitLab ([https://gitlab.com/] с открытым исходным
кодом). В корпоративной среде BitBucket обычно используется в комби-
нации с другими инструментами Atlassian, такими как Confluence и Jira.
GitHub и GitLab предлагают корпоративные решения и конкурируют по
набору возможностей. Если вы решите «развернуть свой репозиторий
Git», то обратите внимание на облегченную версию – Gitea, решение с
открытым исходным кодом, имеющее пользовательский интерфейс, по-
добный Github, и хорошо структурированный, развитый API.

Давайте создадим группу с именем git в нашем реестре и сценарий
Ansible для развертывания Gitea с системой управления базами данных
MySQL на одном хосте:

https://github.com/
https://bitbucket.org/
https://gitlab.com/

424    Глава 22. CI/CD и Ansible

- name: Git Server
 hosts: git
 become: true
 collections:
 - community.mysql
 roles:
 - role: mysql
 tags: mysql
 - role: gitea
 tags: gitea

Коллекция и роли устанавливаются из Ansible Galaxy с помощью сле-
дующих строк в roles/requirements.yml:

collections:
 - community.mysql
roles:
 - src: do1jlr.gitea
 name: gitea

 - src: do1jlr.mysql
 name: mysql

В group_vars/git определена конфигурация для базы данных и Gitea:

https://github.com/roles-ansible/ansible_role_gitea
gitea_db_host: '127.0.0.1:3306'
gitea_db_name: 'gitea'
gitea_db_type: 'mysql'
gitea_db_password: "YourOwnPasswordIsBetter"
gitea_require_signin: false
gitea_fqdn: "{{ ansible_fqdn }}"
gitea_http_listen: '0.0.0.0'
gitea_http_port: '3000'

https://github.com/roles-ansible/ansible_role_mysql
mysql_bind_address: '127.0.0.1'
mysql_root_password: '' # небезопасно
mysql_user_home: /home/vagrant
mysql_user_name: vagrant
mysql_user_password: vagrant
mysql_databases:
 - name: 'gitea'
mysql_users:
 - name: "{{ gitea_db_name }}"
 password: "{{ gitea_db_password }}"
 priv: "{{ gitea_db_name }}.*:ALL"
 state: present

Непрерывная интеграция    425

Эта конфигурация – лишь упрощенный вариант установки Gitea; ее
можно расширить и дополнить более сложными настройками.

Качество кода
Разработчикам нужны инструменты проверки качества програм

много обеспечения. Дополнительные инструменты нужны также для
оценки технического долга и выявления проблем безопасности. Для
этой цели можно использовать SonarSource SonarQube – программное
обеспечение с открытым исходным кодом. Вот сценарий, устанавлива-
ющий SonarQube:

- name: Code Quality
 hosts: sonar
 become: true
 collections:
 - community.postgres
 roles:
 - role: utils
 - role: java
 - role: postgres
 tags: postgres
 - role: sonarqube

Коллекция и роли устанавливаются из Ansible Galaxy с помощью сле-
дующих строк в roles/requirements.yml:

collections:
 - community.postgresql
roles:
 - src: dockpack.base_utils
 name: utils
 - src: geerlingguy.java
 name: java
 - src: lrk.sonarqube
 name: sonarqube
 - src: robertdebock.postgres
 name: postgres

В group_vars/sonar определена конфигурация для базы данных и ин-
струмента SonarQube, известного как Sonar, а также необходимые паке-
ты. Возможности Sonar можно расширить с помощью плагинов. Сущест
вует плагин для запуска ansible-lint, который может очень пригодиться
в проектах, использующих Ansible и исходный код на других языках.
SonarQube – это программа на Java, но она поддерживает множество
языков программирования. Она прекрасно интегрируется с базой дан-

426    Глава 22. CI/CD и Ansible

ных Postgres; однако для создания пользователей необходимо устано-
вить несколько дополнительных пакетов, чтобы создать базу данных
для библиотек Python. Ниже показан минимум, что вам понадобится:

base_utils:
 - gcc
 - make
 - python36-devel
 - unzip
java_packages:
 - java-11-openjdk-devel

Сервер CI
В зависимости от применяемых методов управления исходным кодом

может понадобиться, чтобы ваш собственный сервер сборки выполнял
некоторые задачи автоматически. В GitHub для этой цели есть Actions,
а в GitLab – Runners, автоматически запускающие задачи в контейне-
рах. Оба варианта доступны как в облаке, так и локально, с различными
коммерческими тарифами. Как вариант, можно запустить свой сервер
CI, например, с использованием TeamCity, Atlassian Bamboo или Jenkins.

Jenkins
Jenkins – это де-факто стандартный сервер CI, программа на Java,

которая легко настраивается под разные нужды с помощью плаги-
нов. Среди них есть несколько плагинов для работы с системами
Git, включая Gitea, GitHub и BitBucket. Также доступны плагины для
Ansible и Ansible Tower.

Однако для системных администраторов настройка Jenkins долгое
время оставалась трудоемкой задачей, выполняемой вручную, вклю-
чающей установку зависимостей, запуск и настройку сервера Jenkins,
определение конвейеров и настройку заданий. Излишне говорить, что
все это должно быть максимально автоматизировано.

Мы создали группу jenkins в нашем реестре и сценарии Ansible для раз-
вертывания Jenkins, использовав роли, написанные Джеффом Герлин-
гом (автором книги «Ansible for DevOps» и владельцем учетной записи
@geerlingguy на Ansible Galaxy и GitHub):

- name: CI Server
 hosts: jenkins
 become: true
 roles:
 - role: epel
 tags: epel
 - role: utils
 tags: utils

Непрерывная интеграция    427

 - role: java
 - role: docker
 tags: docker
 - role: jenkins
 tags: jenkins
 - role: configuration
 tags: qa

Большинство ролей устанавливается из Ansible Galaxy с помощью
следующих строк в roles/requirements.yml:

roles:
 - src: dockpack.base_utils
 name: utils
 - src: geerlingguy.repo-epel
 name: epel
 - src: geerlingguy.docker
 name: docker
 - src: geerlingguy.java
 name: java
 - src: geerlingguy.jenkins
 name: jenkins
...

В group_vars/jenkins определена базовая конфигурация для плагинов и
нескольких инструментов:

jenkins_plugins:
 - ansible
 - ansible-tower
 - ansicolor
 - configuration-as-code
 - docker
 - docker-build-step
 - docker-workflow
 - git
 - gitea
 - job-dsl
 - pipeline-build-step
 - pipeline-rest-api
 - pipeline-stage-view
 - sonar
 - timestamps
 - ws-cleanup
base_utils:
 - unzip
 - git

428    Глава 22. CI/CD и Ansible

docker_users:
 - jenkins
 - vagrant

Этот код устанавливает Docker и позволяет Jenkins его использовать.

Jenkins и Ansible
Установка плагинов для Ansible и Ansible Tower добавляет только ар-

хивы Java с расширением .jpi, поэтому Python и Ansible вам придется
устанавливать самостоятельно. Вариантов установки много, но для это-
го примера просто создадим роль для Jenkins и протестируем с ее по-
мощью некоторые роли.

Конфигурация Jenkins как код
Если вы убежденный сторонник идей управления конфигурациями,

то вы наверняка предпочтете автоматизировать настройку Jenkins. Для
этого предусмотрен API, который используется в роли geerlingguy.jenkins,
имеющий такие методы, как get_url и uri. Внутренне Jenkins настраи-
вается преимущественно с использованием XML-файлов, однако мы
можем использовать ряд модулей Ansible, перечисленных в табл. 22.1.

Таблица 22.1. Модули Ansible для настройки Jenkins

Модуль Назначение

jenkins_job Управление заданиями Jenkins

jenkins_job_facts Получение информации о заданиях Jenkins

jenkins_job_info Получение информации о заданиях Jenkins

jenkins_plugin Добавление и удаление плагинов Jenkins

jenkins_script Выполнение сценария Groovy на экземпляре Jenkins

Groovy – это язык сценариев JVM, который используется внутри
Jenkins.

Jenkins также можно использовать из командной строки при условии,
что вы загрузили jar-файл из API:

- name: Get Jenkins CLI for automation
 get_url:
 url: "http://127.0.0.1:8080/jnlpJars/jenkins-cli.jar"
 dest: /var/lib/jenkins/jenkins-cli.jar
 mode: '0755'
 timeout: 300
 retries: 3
 delay: 10

Непрерывная интеграция    429

Для сложной системы автоматизации, такой как Jenkins, следует ис-
пользовать Ansible как можно меньше, чтобы она управлялась сама.
Плагин configuration-as-code (casc) использует файл YAML для настройки
различных элементов Jenkins. Jenkins может сам установить некоторые
инструменты, используя этот конфигурационный файл на YAML, кото-
рый мы устанавливаем с помощью модуля template:

tool:
 ansibleInstallation:
 installations:
 - home: "/usr/local/bin"
 name: "ansible"
 git:
 installations:
 - home: "git"
 name: "Default"
 jdk:
 installations:
 - properties:
 - installSource:
 installers:
 - jdkInstaller:
 acceptLicense: true
 id: "jdk-8u221-oth-JPR"
 maven:
 installations:
 - name: "Maven3"
 properties:
 - installSource:
 installers:
 - maven:
 id: "3.8.4"
 mavenGlobalConfig:
 globalSettingsProvider: "standard"
 settingsProvider: "standard"
 sonarRunnerInstallation:
 installations:
 - name: "SonarScanner"
 properties:
 - installSource:
 installers:
 - sonarRunnerInstaller:
 id: "4.6.2.2472"

Он поддерживает не все инструменты, поэтому мы установили Git с
помощью роли utils.

430    Глава 22. CI/CD и Ansible

Главное преимущество этого метода – Jenkins будет устанавливать
инструменты по запросу на тех агентах сборки, которые в них нужда-
ются. (Агенты сборки – это дополнительные серверы, добавляемые с
увеличением нагрузки.) Ниже показано, как настроить Jenkins с помо
щью файлов YAML. Обратите внимание, что Jenkins необходимо пере-
запустить с дополнительным параметром Java, который сообщит, где
найти эти файлы:

- name: Ensure casc_configs directory exists
 file:
 path: "{{ casc_configs }}"
 state: directory
 owner: jenkins
 group: root
 mode: '0750'

- name: Create Jenkins jobs configuration
 template:
 src: jenkins.yaml.j2
 dest: "{{ casc_configs }}/jenkins.yaml"
 owner: jenkins
 group: root
 mode: '0440'

- name: Enable configuration as code
 lineinfile:
 dest: /etc/sysconfig/jenkins
 regexp: '^JENKINS_JAVA_OPTIONS='
 line:>-
 JENKINS_JAVA_OPTIONS="-Djava.awt.headless=true
 -Djenkins.install.runSetupWizard=false
 -Dcasc.jenkins.config={{ casc_configs }}"
 state: present
 mode: '0600'
 notify: Restart Jenkins

- name: Flush handlers
 meta: flush_handlers

- name: Wait for Jenkins
 wait_for:
 port: 8080
 state: started
 delay: 10
 timeout: 600

Непрерывная интеграция    431

Сохраните файл YAML в каталоге /var/lib/jenkins/casc_configs и на-
стройте параметр Java Dcasc.jenkins.config=/var/lib/jenkins/casc_configs. Он
сообщит Jenkins, где искать конфигурацию.

Конфигурации заданий Jenkins как код
При необходимости с помощью плагина job-dsl (https://oreil.ly/AXKGW)

можно реализовать дополнительный уровень автоматизации. Вот что
об этом говорится в документации плагина Jenkins (https://oreil.ly/QuJRE):

«Jenkins – замечательная система управления сборкой, и многим
нравится настраивать ее задания с помощью ее пользовательского
интерфейса. К сожалению, с ростом числа заданий поддерживать
их становится утомительно, и парадигма использования пользо-
вательского интерфейса оказывается в проигрыше. Кроме того,
в этой ситуации используется типичный шаблон – копирование
заданий для создания новых. Но эти "потомки" имеют привычку
отклоняться от своего первоначального "шаблона", что затрудняет
поддержание согласованности между заданиями.
Плагин Job DSL пытается решить эту проблему, позволяя опреде-
лять задания программно в удобочитаемом файле. К счастью, что-
бы написать такой файл, не обязательно быть экспертом в Jenkins,
потому что конфигурацию из веб-интерфейса легко преобразо-
вать в код».

Проще говоря, вы можете создавать задания Jenkins, основанные на
начальных заданиях. Чтобы настроить Jenkins для этого, добавьте до-
полнительный блок в шаблон casc на YAML:

jobs:
 - file: /home/jenkins/jobs.groovy

Теперь нужно описать задания в файле Groovy. Как знатоки Ansible,
мы используем шаблон Jinja2 – jobs.groovy.j2:

{% for repo in git_repositories %}
pipelineJob('{{ repo }}') {
 triggers {
 scm ''
 }
 definition {
 cpsScm {
 scm {
 git {
 remote {
 url('https://{{ git_host }}/{{ git_path }}/{{ repo }}.git')
 }

https://oreil.ly/AXKGW
https://oreil.ly/QuJRE

432    Глава 22. CI/CD и Ansible

 }
 }
 scriptPath('Jenkinsfile')
 }
 }
}
{% endfor %}

Для этого шаблона необходимо определить следующие переменные:

git_host: github.com
git_path: ansiblebook
git_repositories:
 - ansible_role_ssh
 - ansible_role_ansible
 - ansible_role_web

Теперь файл jobs.groovy установлен. Вы можете использовать модуль
command для активации заданий с помощью jenkins-cli.jar, инструмента
командной строки Java для Jenkins:

- name: Create Job DSL plugin seed job
 template:
 src: jobs.groovy.j2
 dest: /home/jenkins/jobs.groovy
 owner: jenkins
 mode: '0750'

- name: Activate jobs configuration with Jenkins CLI
 command: |
 java -jar jenkins-cli.jar \
 -s http://127.0.0.1:8080/ \
 -auth admin:{{ jenkins_admin_password }} \
 reload-jcasc-configuration
 changed_when: true
 args:
 chdir: /var/lib/jenkins

Запуск CI для ролей Ansible
Molecule (рассматривается в главе 14) – отличный фреймворк для

оценки качества ролей Ansible. Чтобы автоматизировать задание
Jenkins, добавьте сценарий на Groovy в корневой каталог каждого ре-
позитория с исходным кодом, для проверки которого предполагает-
ся использовать Jenkins. Этот сценарий должен называться Jenkinsfile.
В нашем примере Jenkinsfile определяет этапы Jenkins для каждого этапа
Molecule:

Непрерывная интеграция    433

pipeline {
 agent any
 options {
 disableConcurrentBuilds()
 ansiColor('vga')
 }
 triggers {
 pollSCM 'H/15 * * * *'
 cron 'H H * * *'
 }
 stages {
 stage ("Build Environment") {
 steps {
 sh '''
 source /usr/local/bin/activate
 python -V
 ansible --version
 molecule --version
 '''
 }
 }
 stage ("Syntax") {
 steps {
 sh '(source /usr/local/bin/activate && molecule syntax)'
 }
 }
 stage ("Linting") {
 steps {
 sh '(source /usr/local/bin/activate && molecule lint)'
 }
 }
 stage ("Playbook") {
 steps {
 sh '(source /usr/local/bin/activate && molecule converge)'
 }
 }
 stage ("Verification") {
 steps {
 sh '(source /usr/local/bin/activate && molecule verify)'
 }
 }
 stage ("Idempotency") {
 steps {
 sh '(source /usr/local/bin/activate && molecule idempotence)'
 }
 }
 }
}

434    Глава 22. CI/CD и Ansible

Определение этих этапов позволяет следить за их выполнением в ин-
терфейсе Jenkins (рис. 22.1).

Рис. 22.1. Конвейер Jenkins для роли Ansible

Файлы Jenkinsfile поддерживают массу возможностей. Выше приве-
ден лишь простой пример конвейера заданий, точно соответствующих
этапам Molecule, но в нем не реализованы другие задачи. Дополнитель-
ную информацию о конвейерах вы найдете в документации Jenkins
(https://oreil.ly/YOtO4).

Обкатка
Большинство организаций, разрабатывающих программное обеспе-
чение, имеют план обкатки. Под обкаткой подразумевается запуск
отдельных окружений для разных целей в жизненном цикле програм
много обеспечения. Вы разрабатываете программное обеспечение на
виртуальном рабочем столе, а программное обеспечение создается в
среде разработки, тестируется в тестовой среде, затем развертывается
для «приемки» и в конечном итоге в промышленном окружении. Сде-
лать все это можно разными способами, но в целом желательно, что-
бы проблемы обнаруживались как можно раньше. Хорошей практикой
считается использование разделения сети и элементов управления
безопасностью, таких как брандмауэры, доступом и резервированием.
На рис. 22.2 показаны такие промежуточные окружения.

Базовая настройка обычно быстро усложняется, но Jenkins и особен-
но агенты Jenkins, ограниченные такими окружениями, могут помочь
автоматизировать процесс обкатки достаточно безопасным способом.

https://oreil.ly/YOtO4

Плагин Ansible    435

Рис. 22.2. Различные окружения обкатки

Плагин Ansible
Плагин Ansible для Jenkins создает пользовательский интерфейс для
этапа сборки в задании Jenkins. Если решите использовать конвейер-
ное задание с файлом Jenkinsfile, то сможете использовать фрагмент,
подобный представленному ниже, для запуска сценария как этапа ва-
шего конвейера:

ansiblePlaybook become: true, colorized: true, credentialsId: 'Machines',
disableHostKeyChecking: true, installation: 'ansible', inventory:
'inventory/hosts', limit: 'webservers', playbook: 'playbooks/playbook.yml',
tags: 'ssh', vaultCredentialsId: 'ANSIBLE_VAULT_PASSWORD'

Используйте Snippet Generator для параметризации этапа сборки
(рис. 22.3).

436    Глава 22. CI/CD и Ansible

Рис. 22.3. Jenkins Snippet Generator для применения
сценария Ansible на этапе сборки

Преимуществами использования Jenkins для запуска сценариев явля-
ются централизация и журналирование. Это естественное решение для
команд разработчиков, которые уже знают и используют Jenkins. An-
sible должен присутствовать на сервере Jenkins или на агентах Jenkins,
которые будут выполнять задания.

Плагин Ansible Tower
Если вы автоматизируете производственную среду вашего предприятия
с помощью Ansible Automation Controller (см. главу 23), то вам навер-
няка понадобится плагин Ansible Tower. Ansible Automation Controller
обеспечивает лучшее масштабирование как по количеству команд, ко-
торые могут его использовать, так и по управлению доступом на основе
ролей. Ansible Automation Controller также имеет больше функций без-
опасности, чем Jenkins.

Плагин Ansible Tower    437

Чтобы отделить задачи внутреннего контроля, в организациях часто
создаются окружения обкатки и ограничивается доступ к промышлен-
ным окружениям. Разработчикам могут быть даны права на запуск зада-
ний или рабочих процессов с четко определенной комбинацией сценари-
ев, компьютеров, учетных данных и других предварительно настроенных
параметров. Использование Jenkins для запуска шаблона задания может
стать отличным шагом на пути к непрерывной доставке! С помощью
Jenkins Snippet Generator можно организовать доступ к Ansible Automation
Controller для запуска сценария Ansible с заданными параметрами (шаб
лон задания; рис. 22.4). В Ansible Automation Controller можно безопас-
но хранить учетные данные и делегировать их использование заданию
Jenkins. Это означает, что разработчикам не придется входить в реестр
для развертывания своего приложения. Им может быть даже запрещено
это из соображений соответствия требованиям или рисков.

Рис. 22.4. Jenkins Snippet Generator для шага построения
шаблона задания Ansible Tower

438    Глава 22. CI/CD и Ansible

Этот плагин можно использовать после создания и тестирования
программного обеспечения в окружении обкатки для развертывания
приложения в промышленном окружении. Этот последний шаг сборки
можно создать в Jenkinsfile с помощью Snippet Generator, использовав
следующий код:

ansibleTower jobTags: 'appdeploy', jobTemplate: '1234', jobType: 'run', limit:
'web', throwExceptionWhenFail: false, towerCredentialsId:
'ANSIBLE_VAULT_PASSWORD', towerLogLevel: 'false', towerServer: 'tower'

Заключение
Ansible – отличный инструмент для непрерывной доставки сложных
программных систем. Он может не только управлять средой разработ-
ки, но и глубоко интегрироваться в процессы обкатки программного
обеспечения, автоматизируя все рутинные задачи, снижающие продук-
тивность при выполнении вручную.

Глава 23
Ansible Automation Platform

Ansible Automation Platform – это коммерческий программный продукт,
предлагаемый Red Hat. Ansible Automation Platform 2 – это платформа
автоматизации нового поколения для предприятий. Она включает пе-
реработанный Automation Controller 4, ранее известный как Tower/AWX,
и Automation Hub – локальный репозиторий для контента Ansible, заме-
щающий локальный репозиторий Ansible Galaxy. Вы можете настроить
Automation Hub в соответствии с политиками управления в вашей орга-
низации или просто синхронизировать его с репозиторием сообщества.
В примере 23.1 показан файл, который можно передать администрато-
ру Automation Hub (см. рис. 23.1). Он определяет коллекции, которые
Automation Hub будет обслуживать в локальной сети. Для загрузки кол-
лекций Automation Hub должен иметь подключение к интернету.

Пример 23.1. requirements.yml для получения контента сообщества
из Automation Hub

collections:
 # Установка коллекций из Ansible Galaxy.
 - name: ansible.windows
 source: https://galaxy.ansible.com
 - name: ansible.utils
 source: https://galaxy.ansible.com
 - name: awx.awx
 source: https://galaxy.ansible.com
 - name: community.crypto
 source: https://galaxy.ansible.com
 - name: community.docker
 source: https://galaxy.ansible.com
 - name: community.general
 source: https://galaxy.ansible.com
 - name: community.kubernetes
 source: https://galaxy.ansible.com
...

440    Глава 23. Ansible Automation Platform

Рис. 23.1. Выгрузка файла требований

При желании в файле ansible.cfg можно настроить несколько серверов
для команды ansible-galaxy, если вы используете Private Automation Hub
в Ansible Automation Platform 2 (пример 23.2).

Пример 23-2. ansible.cfg

[galaxy]
server_list = automation_hub, release_galaxy, my_org_hub, my_test_hub

[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/
token
token=my_ah_token

[galaxy_server.release_galaxy]
url=https://galaxy.ansible.com/
token=my_token

[galaxy_server.my_org_hub]
url=https://automation.my_org/
username=my_user
password=my_pass

[galaxy_server.my_test_hub]
url=https://automation-test.my_org/
username=test_user
password=test_pass

Окружения обкатки, такие как my_test_hub, можно использовать для
тестирования локальных коллекций, которые в конечном итоге будут
опубликованы в my_org_hub.

Заключение    441

В архитектуре Ansible Automation Platform 2 используются разработ-
ки в области контейнерных технологий. Она более масштабируемая и
безопасная, чем предыдущее поколение. Самое большое отличие за-
ключается в отделении плоскости управления от окружений выполне-
ния, как показано на рис. 23.2.

Рис. 23.2. Архитектура Ansible Automation Platform 2

Для управления зависимостями в Ansible Tower использовались вир-
туальные окружения Python, но этот метод создавал проблемы для опе-
ративных команд Tower. Поэтому в Ansible Automation Platform 2 была
добавлена автоматизация создания окружений выполнения; другими
словами, автоматизация применяется к образам контейнеров, которые
включают Ansible, контент Ansible и любые другие зависимости, как по-
казано на рис. 23.3.

Рис. 23.3. Среда выполнения Ansible

Окружения выполнения Ansible основаны на ansible-builder ([https://oreil.
ly/NlgNY] обсуждается далее в этой главе).

Плоскость управления

Среда
выполнения

Среда
выполнения

Среда
выполнения

Рабочие
процессы Аудит

Веб-интерфейс

Универсальный базовый образ (UBI8)

Требуемые
коллекции

Python и
необходимые
библиотеки

https://oreil.ly/NlgNY
https://oreil.ly/NlgNY

442    Глава 23. Ansible Automation Platform

Ansible Automation Platform можно установить в RedHat OpenShift
или на хостах Red Hat Enterprise Linux 8 (rhel/8). Пример кода для этой
главы создает кластер разработки в VirtualBox с помощью Vagrant. Для
создания машины rhel/8 в VirtualBox представлена также конфигурация
Packer (Packer обсуждается в главе 16).

Automation Controller обеспечивает более точное управление поли-
тиками доступа на основе пользователей и ролей в сочетании с пользо-
вательским веб-интерфейсом (рис. 23.4) RESTful API.

Рис. 23.4. Панель управления Ansible Automation Controller

Модели подписки
Red Hat предлагает поддержку (https://oreil.ly/qsiFg) в виде трех типов еже-
годных подписок, каждый с разными соглашениями об уровне обслу-
живания (Service-Level Agreement, SLA):

•	 самостоятельная поддержка (без официальной поддержки и ка-
ких-либо обязательств);

•	 стандартная (поддержка с уровнем: 8×5);
•	 премиум (поддержка с уровнем: 24×7).

Все подписки включают рассылку регулярных обновлений и новых
версий Ansible Automation Platform.

https://oreil.ly/qsiFg

Модели подписки    443

Как разработчик, вы можете получить бесплатный доступ ко многим
технологическим ресурсам, предлагаемым компанией Red Hat. Для это-
го достаточно зарегистрироваться (https://oreil.ly/Q7UDb) и получить подпи-
ску Red Hat Developer for Individuals.

Пробная версия Ansible Automation Platform
Red Hat предоставляет бесплатную 60-дневную пробную лицензию

(https://oreil.ly/wSoD5) с набором возможностей из модели подписки само-
стоятельной поддержки, до 100 управляемых хостов.

После регистрации в качестве разработчика и подачи заявки на проб-
ную версию вы сможете экспортировать манифест лицензии (https://oreil.
ly/7j8MF) для активации своего экземпляра, как показано на рис. 23.5.

Рис. 23.5. Управление подписками

После приобретения Ansible, Inc. в 2015 году Red Hat выра-
зила намерение продолжить разработку открытой версии
Ansible Tower под названием AWX . Она устанавливается в
Kubernetes с помощью AWX Operator. Подробные инструкции
вы найдете в документации (https://oreil.ly/NjaVt). Исходный
код AWX доступен на GitHub (https://oreil.ly/heqzB).

Для быстрой оценки этой версии можно воспользоваться Vagrant и
сценарием из GitHub (https://oreil.ly/FRY0I):

https://oreil.ly/Q7UDb
https://oreil.ly/wSoD5
https://oreil.ly/7j8MF
https://oreil.ly/7j8MF
https://oreil.ly/NjaVt
https://oreil.ly/heqzB
https://oreil.ly/FRY0I

444    Глава 23. Ansible Automation Platform

$ git clone https://github.com/ansiblebook/ansiblebook.git
$ cd ansiblebook/ch23 && vagrant up

Если машина Vagrant недоступна по адресу https://server03/, то вам
может потребоваться выполнить следующую команду внутри маши-
ны Vagrant, чтобы создать сетевой интерфейс, связанный с IP-ад
ресом 192.168.56.13:

$ sudo systemctl restart network.service

Какие задачи решает Ansible Automation Platform
Ansible Automation Platform – не просто веб-интерфейс к Ansible. Она
добавляет в Ansible некоторые дополнительные возможности, такие
как управление доступом, проектами, реестрами и запуск заданий. Рас-
смотрим их поближе в этом разделе.

Управление доступом
В крупных организациях Ansible Automation Platform помогает управ-

лять автоматизацией посредством делегирования. Вы можете создать
организацию для каждого отдела, а локальный системный администра-
тор – группы с ролями и добавить в них сотрудников, наделив их права-
ми для управления хостами и устройствами, насколько это необходимо
для выполнения служебных обязанностей.

Ansible Automation Platform создавалась с учетом разделения обя
занностей – весьма мощной идеи при правильном применении. Пред-
ставьте, что разработчики сценария – это другие люди, не являющиеся
владельцами инфраструктуры. Попробуйте создать репозиторий для
ваших сценариев и еще один для реестра, чтобы команда со своими ма-
шинами могла создать еще один реестр для повторного использования
ваших сценариев. Ansible Automation Platform поддерживает концеп-
цию организаций с командами, каждая из которых имеет разные уровни
разрешений.

Ansible Automation Platform действует как защита для хостов. При ее
использовании ни одна группа и ни один работник не должны иметь
прямого доступа к управляемым хостам. Это снижает сложность и уве-
личивает безопасность. На рис. 23.6 показан веб-интерфейс Ansible
Automation Platform для управления пользователями. С Ansible Auto-
mation Platform также можно использовать другие системы аутентифи-
кации, такие как Azure AD, GitHub, Google OAuth2, LDAP, RADIUS, SAML
или TACACS+. Соединение Ansible Automation Platform с существующи-
ми системами аутентификации, такими как каталоги LDAP, может сни-
зить снизить затраты на администрирование пользователей.

Проекты    445

Проекты
Проектом в терминологии Ansible Automation Platform называется па-
кет логически связанных сценариев и ролей.

Рис. 23.6. Веб-интерфейс для управления пользователями
В классических проектах Ansible вместе со сценариями и ролями час

то можно видеть статические реестры вместе со сценариями и ролями.
Ansible Automation Platform осуществляет инвентаризацию отдельно.
Все, что имеет отношение к инвентаризации и связанным с ней пере-
менным, таким как переменные групп или хостов, будет недоступно.

Цель (например, hosts: <target>) в этих сценариях особенно
важна. Старайтесь использовать общие имена. Это позволит
вам выполнять сценарии с разными реестрами, о чем под-
робнее рассказывается далее в этой главе.

Следуя общепринятым рекомендациям, мы храним свои проекты со
сценариями в системе управления версиями. Механизм управления
проектами в Ansible Automation Platform поддерживает такие системы,
как Git, Mercurial и Subversion, и может быть настроен на загрузку про-
ектов из них.

В крайнем случае, если нет возможности использовать систему управ-
ления версиями, можно определить статический путь в каталоге /var/
lib/awx/projects, где проект будет храниться локально, на сервере Ansible

446    Глава 23. Ansible Automation Platform

Automation Platform. Также есть возможность загружать архивы из уда-
ленного хранилища.

Так как проекты имеют свойство развиваться с течением времени,
исходный код сценариев на сервере Ansible Automation Controller дол-
жен синхронизироваться с содержимым системы управления версиями.
Для этого в Ansible Automation Platform имеется множество решений.

Например, гарантировать использование последних версий проек-
тов в Ansible Automation Platform можно, установив флажок «Update on
Launch» (обновление на запуске) в параметрах проекта, как показано на
рис. 23.7. Также можно настроить задания обновления проектов по рас-
писанию. Наконец, проекты можно обновлять вручную, если вы хотите
сами управлять обновлением.

Рис. 23.7. Параметры настройки обновления проекта
из системы управления версиями в Ansible Automation Controller

Управление инвентаризацией
Ansible Automation Platform позволяет управлять реестрами как са-

мостоятельными ресурсами, включая управление доступом к этим ре-
естрам. Типичный шаблон – определить разные реестры с хостами для
эксплуатации, обкатки и тестирования и своими учетными данными и
переменными.

В каждом из реестров можно определить свои переменные по умол-
чанию и вручную добавлять группы и хосты. Кроме того, как показано
на рис. 23.8, Ansible Automation Platform позволяет запрашивать спи-

Проекты    447

сок хостов динамически из некоторого ресурса (например, из Microsoft
Azure Resource Manager) и помещать их в группу.

Рис. 23.8. Выбор источника информации о хостах в Ansible Automation Controller

С помощью специальной формы можно добавлять переменные групп
и хостов и переопределять значения по умолчанию.

Также есть возможность временно отключать хосты, щелкая по кноп-
кам, как показано на рис. 23.9, и тем самым исключать их из обработки.

Рис. 23.9. Исключение хостов из обработки в Ansible Automation Platform

Запуск заданий из шаблонов
Шаблоны заданий, как показано на рис. 23.10, связывают проекты с

реестрами. Они определяют, как пользователи могут запускать сцена-
рии из проекта на определенных хостах из выбранного реестра.

448    Глава 23. Ansible Automation Platform

Рис. 23.10. Шаблоны заданий в Ansible Automation Platform

На уровне сценария можно применять такие уточнения, как допол-
нительные параметры и теги. Также есть возможность указать режим
запуска сценария. Например, одним пользователям можно позволить
запускать сценарии только в режиме проверки, а другим – только на
определенном подмножестве хостов, зато в полноценном режиме.

На уровне целей есть возможность выбирать определенные хосты и
группы.

Для выполняемого шаблона создается новая запись задания, как по-
казано на рис. 23.11.

Рис. 23.11. Записи заданий в Ansible Automation Platform

RESTful API    449

В детальном обзоре каждой записи, как показано на рис. 23.12, при-
водится информация не только об успехе или неудаче его выполнения,
но также о дате и времени запуска задания, о моменте его заверше-
ния, кто его запустил и с какими параметрами. Есть возможность даже
выполнять фильтрацию по операциям, чтобы увидеть все задачи и их
результаты. Вся эта информация сохраняется в базе данных, что дает
возможность исследовать ее в любой момент.

Рис. 23.12. Подробный обзор результатов задания
в Ansible Automation Platform

RESTful API
Сервер Ansible Automation Controller поддерживает REST API (Repre-
sentational State Transfer – программный интерфейс передачи пред-
ставления о состоянии), позволяющий интегрировать его с имеющи-
мися конвейерами сборки и установки или системами непрерывного
развертывания.

API можно исследовать с помощью браузера, открывая в нем страни-
цы с адресами вида http://<tower_server>/api/v2/ (рис. 23.13):

$ firefox https://server03/api/v2/

На момент написания этих строк последней версией API была версия v2.
Теоретически API можно использовать для нужд интеграции, но во-

обще для доступа к Ansible Automation Controller существует коллекция
Ansible: awx.awx.

450    Глава 23. Ansible Automation Platform

Рис. 23.13. Ansible Automation Platform API версии 2

AWX.AWX
Итак, как создать нового пользователя в Ansible Automation Controller
или запустить задание, используя только API? Конечно, можно восполь-

AWX.AWX    451

зоваться самым популярным инструментом командной строки cURL, но
Ansible предлагает еще более удобный способ: сценарии!

В отличие от приложения Ansible Automation Platform, Ansi-
ble Tower CLI – это программное обеспечение с открытым
исходным кодом, опубликованное на GitHub (https://oreil.ly/
ryjSo) под лицензией Apache 2.0.

Установка
Чтобы установить awx.awx, используйте Ansible Galaxy:

$ ansible-galaxy collection install awx.awx

Поскольку Ansible Automation Platform использует предварительно
настроенный самоподписанный сертификат SSL/TLS, отключите про-
верку в шаблоне для файла tower_cli.cfg:

[general]
host = https://{{ awx_host }}
verify_ssl = false
oauth_token = {{ awx_token }}

Прежде чем обратиться к API, нужно настроить учетные данные в до-
полнительной переменной admin_password, как показано в примере 23.3.

Пример 23.3. awx-config.yml

- name: Configure awx
 hosts: automationcontroller
 become: false
 gather_facts: false

 vars:
 awx_host: "{{ groups.automationcontroller[0] }}"
 awx_user: admin
 cfg: "-k --conf.host https://{{ awx_host }} --conf.user {{ awx_user }}"

 tasks:

 - name: Login to Tower
 delegate_to: localhost
 no_log: true
 changed_when: false
 command: "awx {{ cfg }} --conf.password {{ admin_password }} -k login"

https://oreil.ly/ryjSo
https://oreil.ly/ryjSo

452    Глава 23. Ansible Automation Platform

 register: awx_login

 - name: Set awx_token
 delegate_to: localhost
 set_fact:
 awx_token: "{{ awx_login.stdout | from_json | json_query('token') }}"

 - name: Create ~/.tower_cli.cfg
 delegate_to: localhost
 template:
 src: tower_cli.cfg
 dest: "~/.tower_cli.cfg"
 mode: '0600'
...

В результате будет создан файл ~/.tower_cli.cfg с токеном. Теперь мож-
но создать сценарий для автоматизации Automation Controller – авто-
матизации нового уровня!

Создание организации
Модель данных, показанная на рис. 23.13, требует наличия некоторых

объектов, прежде чем можно будет создать другие, поэтому первое, что
нужно создать, – добавить организацию:

- name: Configure Organization
 hosts: localhost
 gather_facts: false
 collections:
 - awx.awx

 tasks:

 - name: Create organization
 tower_organization:
 name: "Tower"
 description: "Tower organization"
 state: present

 - name: Create a team
 tower_team:
 name: "Tower Team"
 description: "Tower team"
 organization: "Tower"
 state: present

Все ссылки указывают либо на организации, либо на реестры.

Создание реестра    453

Создание реестра
Для нашего примера мы с помощью коллекции awx.awx создали простой
реестр Ansible Automation Platform . Обычно модулю tower_project пере-
дается ссылка на Git-репозиторий, а tower_inventory_source привязывается
к tower_inventory:

- name: Configure Tower Inventory
 hosts: localhost
 gather_facts: false
 collections:
 - awx.awx

 tasks:

 - name: Create inventory
 tower_inventory:
 name: "Tower Inventory"
 description: "Tower infra"
 organization: "Tower"
 state: present

 - name: Populate inventory
 tower_host:
 name: "{{ item }}"
 inventory: "Tower Inventory"
 state: present
 with_items:
 - 'server01'
 - 'server02'
 - 'server03'

 - name: Create groups
 tower_group:
 name: "{{ item.group }}"
 inventory: "Tower Inventory"
 state: present
 hosts:
 - "{{ item.host }}"
 with_items:
 - group: automationcontroller
 host: 'server03'
 - group: automationhub
 host: 'server02'
 - group: database
 host: 'server01'

454    Глава 23. Ansible Automation Platform

Если вы создаете и уничтожаете виртуальные машины с помощью
Ansible, то тем самым вы управляете реестром.

Запуск сценария с помощью шаблона задания
Если вы привыкли запускать сценарии, используя только Ansible Core

в командной строке, то, вероятно, часто используете привилегии адми-
нистратора. В Ansible Automation Platform есть способ смоделировать
это в виде защищенного окружения.

Сценарии хранятся в системе управления исходным кодом, такой
как Git. Проект соответствует такому репозиторию Git. Импортировать
проект можно с помощью модуля tower_project:

- name: Create project
 tower_project:
 name: "test-playbooks"
 organization: "Tower"
 scm_type: git
 scm_url: https://github.com/ansible/test-playbooks.git

Перед запуском сценария Ansible в командной строке вы, вероятно,
настраиваете ключи SSH или другой способ входа в целевые системы,
перечисленные в реестре. При таком способе запуска сценарий привя-
зывается к вашей учетной записи пользователя на управляющем хосте
Ansible. При использовании Ansible Automation Platform учетные дан-
ные машины сохраняются в (зашифрованной) базе данных платформы.

SSH-ключи являются конфиденциальными данными, но есть спо-
соб добавить зашифрованные закрытые ключи в Ansible Automation
Controller, чтобы он запрашивал парольную фразу при запуске шаблона
задания, в котором эти ключи используются:

- name: Create machine credential
 tower_credential:
 name: 'Tower Credential'
 credential_type: Machine
 ssh_key_unlock: ASK
 organization: "Tower"
 inputs:
 ssh_key_data: "{{ lookup('file', 'files/tower_ed25519') }}"

Теперь, создав проект и реестр и организовав доступ к машинам с их
учетными данными, можно создать шаблон задания для запуска сцена-
рия из проекта на машинах, перечисленных в реестре:

- name: Create job template
 tower_job_template:
 name: "Test Job Template"
 project: "test-playbooks"

Запуск Ansible в контейнерах    455

 inventory: "Tower Inventory"
 credential: 'Tower Credential'
 playbook: ping.yml

Почти наверняка у вас появится желание автоматизировать выпол-
нение задания из шаблона. Коллекция awx.awx упрощает эту задачу – вам
достаточно знать имя шаблона задания для запуска:

- name: Launch the Job Template
 tower_job_launch:
 job_template: "Test Job Template"

Шаблоны заданий чрезвычайно полезны для выполнения стандарт-
ных процедур. Примеры, представленные выше, вы с легкостью смо-
жете опробовать в своей системе разработки. Если ваш шаблон зада-
ния предназначен для использования несколькими командами, то
организуйте запрос на ввод реестра и учетных данных перед запуском
шаблона задания. Так вы сможете делегировать все виды стандартных
задач командам в их инфраструктурных окружениях.

Запуск Ansible в контейнерах
Контейнеры упрощают работу с Ansible в двух областях. Одна из них –
тестирование ролей Ansible с помощью фреймворка Molecule (https://oreil.
ly/cQr6T), обсуждавшегося в главе 14.

Второй аргумент в пользу использования контейнеров – сложности
с внешними зависимостями, разные для разных проектов или команд.
Когда требуется импортировать библиотеки Python и внешние компо-
ненты Ansible, такие как роли, модули, плагины и коллекции, создание
и использование образов контейнеров может помочь обеспечить их
актуальность для долгосрочного использования. Пакеты Linux, Python,
Ansible, роли и коллекции Ansible постоянно обновляются. Часто бы-
вает сложно создать одну и ту же среду выполнения для Ansible на не-
скольких машинах или в разные моменты времени. Среды выполнения
(https://oreil.ly/hpefh) – это согласованный, воспроизводимый и переноси-
мый метод, позволяющий организовать выполнение заданий Ansible
Automation на вашем ноутбуке в точно такой же среде, как на платфор-
ме AWX/Ansible Automation Platform.

Создание сред выполнения
Создание сред выполнения Ansible – сложная тема, но этот прием мо-

жет вам понадобиться при работе с Ansible Automation Platform 2. Сре-
ды выполнения возникли в результате работы над библиотекой Python
ansible-runner (https://oreil.ly/bkOei). Они создаются с помощью Podman на
RHEL 8 и инструмента Python под названием ansible-builder (https://oreil.

https://oreil.ly/cQr6T
https://oreil.ly/cQr6T
https://oreil.ly/hpefh
https://oreil.ly/bkOei
https://oreil.ly/1vpq5

456    Глава 23. Ansible Automation Platform

ly/1vpq5). (Podman – это среда выполнения контейнера для разработчи-
ков на RHEL 8).

Давайте посмотрим, как создать среду выполнения. Сначала созда-
дим виртуальное окружение для работы с ansible-builder и ansible-runner:

$ python3 -m venv .venv

Активируем виртуальное окружение и обновим инструменты:

$ source .venv/bin/activate
$ python3 -m pip install --upgrade pip
$ pip3 install wheel

Затем установим ansible-builder и ansible-runner:

$ pip3 install ansible-builder
$ pip3 install ansible-runner

Ansible Builder требует определить файл с именем execute-environ-
ment.yml:

version: 1

ansible_config: 'ansible.cfg'

dependencies:
 galaxy: requirements.yml
 python: requirements.txt
 system: bindep.txt

additional_build_steps:
 prepend: |
 RUN pip3 install --upgrade pip setuptools
 append:
 - RUN yum clean all

Библиотеки Python должны быть перечислены в файле requirements.
txt, а зависимости Ansible – в файле requirements.yml. Для двоичных
зависимостей, таких как пакеты git и unzip, используется файл нового
типа bindep.txt:

git [platform:rpm]
unzip [platform:rpm]

Определив среду выполнения, создадим ее:

$ ansible-builder \
 --build-arg ANSIBLE_RUNNER_IMAGE=quay.io/ansible/ansible-runner:stable-2.11-latest
\
 -t ansible-controller -c context --container-runtime podman

https://oreil.ly/1vpq5

Заключение    457

Чтобы использовать среду выполнения, создадим сценарий-обертку
вокруг этой команды:

$ podman run --rm --network=host -ti \
 -v${HOME}/.ssh:/root/.ssh \
 -v ${PWD}/playbooks:/runner \
 -e RUNNER_PLAYBOOK=playbook.yml \
 ansible-controller

Заключение
Ansible Automation Platform 2 – это продукт автоматизации ИТ для
предприятий. Контроллер автоматизации Automation Controller (ра-
нее известный как Ansible Tower) предлагает возможности управления
доступом на основе ролей, разделения обязанностей и делегирования
полномочий. Проекты Ansible извлекаются из системы управления
версиями, есть возможность безопасно управлять учетными данными,
распределять ресурсы и учитывать каждое системное изменение. Это
позволяет организациям с сотнями команд управлять десятками тысяч
машин. Недаром стоимость лицензии рассчитывается по количеству
хостов.

Automation Hub предлагает коллекции Ansible, созданные партнера-
ми Red Hat, которые позволяют администраторам курировать контент
сообщества и ограничивать или подменять доступ к Ansible Galaxy.

Среды выполнения Ansible в Ansible Automation Platform 2 изолируют
программные зависимости в контейнерах, что обеспечивает бóльшую
гибкость, чем виртуальные окружения, используемые в Ansible Tower.
Вы можете с легкостью хранить технический долг Ansible (требуемые
конкретные версии, конфликтующие библиотеки и т. д.) в нескольких
контейнерах. Среды выполнения могут создаваться командами, а не
администратором, что позволяет сократить время их подготовки.

Глава 24
Практические рекомендации

В этой главе мы предлагаем вашему вниманию набор обобщенных
практических рекомендаций, но имейте в виду, что практические ре-
комендации редко бывают универсальными для разных контекстов.
То, что хорошо для Spotify или Netflix, может не подходить для других
компаний. Наша главная цель – заставить вас подумать о возможно-
сти использования подходящих вам рекомендаций и обсудить те, что
могут вызвать у вас беспокойство. Практические рекомендации осно-
ваны на принципах проектирования и опыте использования Ansible
в различных условиях. На уровне управления необходимо учитывать
особенности труда специалистов-практиков и оценки команд DevOps.

Простота, модульность и сочетаемость
Майкл ДеХаан (Michael DeHaan) создавал Ansible для автоматизации
рутинных задач самым простым из мыслимых способов, потому что хо-
тел тратить свое время на что-то более интересное. Теперь неопытные
пользователи могут заглянуть на сайт Ansible Galaxy (https://galaxy.ansible.
com/), отыскать нужные им роли и коллекции и в течение нескольких
часов организовать решение некоторых задач с помощью Ansible.

С тех пор как ДеХаан и Грег ДеКенигсберг (Greg DeKoenigsberg) ос-
новали сообщество Ansible, они обдумывали и формулировали прак-
тические рекомендации (https://oreil.ly/ubBBZ), однако в документации к
версии 2.10 название «практические рекомендации» (https://oreil.ly/Yp36I)
было заменено на «советы и рекомендации» (https://oreil.ly/0pOeP). Они от-
мечают, что проекты с открытым исходным кодом с большей вероят-
ностью привлекут и удержат участников, если обладают двумя особыми
свойствами: высокой модульностью и высокой ценностью возможно-
стей. Высокая модульность, или слабая связанность, позволяет свободно
расширять возможности Ansible. Высокая ценность возможностей, так-
же известная как сочетаемость, позволяет выбирать, например, между
Galaxy и Terraform, для подготовки инфраструктуры и Ansible к управ-
лению системами. Сочетаемость также является одной из основ Дао
HashiCorp (https://oreil.ly/Kohiw).

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://oreil.ly/ubBBZ
https://oreil.ly/Yp36I
https://oreil.ly/0pOeP
https://oreil.ly/Kohiw

Отделяйте роли и коллекции    459

Организуйте контент
•	 Используйте GitHub, чтобы сохранить свой контент Ansible и сде-

лать его доступным для других.
•	 Сохраняйте в репозитории все роли, коллекции, проекты и реест

ры.
•	 Следите за изменениями и одобрениями с помощью рабочего

процесса, такого как GitHub Flow (https://oreil.ly/kgyjK).
•	 Управляйте своими зависимостями: дистрибутивами, пакетами,

библиотеками, инструментами.
•	 Волшебство возможно, только если разместить файлы в нужных

местах.
•	 Используйте правильные инструменты для работы: сначала по-

пробуйте найти готовый модуль.
•	 Не решайте сложности с помощью Ansible; попробуйте написать

модуль на Python.

Отделяйте реестры от проектов
•	 Делайте проекты многоразовыми для обслуживания нескольких

пользователей.
•	 Разрешайте владельцам инфраструктуры определять доступ к

хостам в реестре.
•	 Используйте реестры с группами, соответствующими функциям

(или ролям).
•	 Комбинируйте проекты и реестры с помощью отдельных репози-

ториев Git.
•	 Создавайте окружения обкатки для исчерпывающего тестирова-

ния перед запуском.
•	 Используйте альтернативную структуру каталога (https://oreil.ly/

HH0VX) для подготовки к переходу на AWX/Ansible Automation
Platform.

Отделяйте роли и коллекции
•	 Помните, что роли – это способ автоматической загрузки пе-

ременных, файлов, задач, обработчиков и шаблонов на основе
известной файловой структуры. Соглашение о конфигурации –
мощный шаблон.

•	 Определяйте по одному действию для каждой роли.

https://oreil.ly/kgyjK
https://oreil.ly/HH0VX
https://oreil.ly/HH0VX

460    Глава 24. Практические рекомендации

•	 Коллекции состоят из ролей, модулей, плагинов и т. д. Тестируйте
их как компоненты.

•	 Группируйте контент по ролям, чтобы упростить совместное ис-
пользование с другими пользователями.

•	 Используйте манифест roles/requirements.yml для выражения за-
висимостей.

•	 Отделяйте роли проекта, общие роли и роли Galaxy. Настройте
roles_path для поиска этих ролей.

•	 Используйте каталоги верхнего уровня: файлы, шаблоны для ло-
кальной реализации шаблонов ролей.

•	 Значения по умолчанию легко могут переопределяться пользова-
телем с помощью group_vars.

•	 Переменные не предназначены для изменения пользователем.

Сценарии
•	 Старайтесь сделать сценарии максимально удобочитаемыми для

неспециалистов (заметка на будущее).
•	 Представляйте желаемое состояние или простое изменение со-

стояния декларативным способом.
•	 Определяйте безопасные настройки по умолчанию для новичков.

Сделайте решение задач простым для всей команды.
•	 Если есть простое решение, используйте его.
•	 Делайте сценарии выполняемыми (со строкой #!), а файлы vars – нет.

Оформляйте код
•	 Форматируйте сценарии в стиле, характерном для YAML .
•	 Редакторы выбирают подсветку синтаксиса, основываясь на рас-

ширении файлов.
•	 Всегда давайте осмысленные имена своим сценариям, операци-

ям и задачам, чтобы было понятно, что и как выполнялось при
разборе журналов.

•	 Начинайте комментарии со знака решетки (#). Не злоупотребляй-
те комментариями и пустыми строками.

•	 Чтобы найти проблемы в контенте до отправки в репозиторий,
используйте ansible-lint (https://oreil.ly/HHMti), ansible-later (https://oreil.ly/
zmXVV), yamllint (https://oreil.ly/4SW35), SonarQube (https://oreil.ly/07p8h), Pylint
(https://oreil.ly/B6TRI), ShellCheck (https://oreil.ly/vX2mS), Perl::Critic (https://oreil.
ly/hBnfg) и любые другие статические анализаторы кода (линтеры),
подходящие для вашего проекта.

https://oreil.ly/HHMti
https://oreil.ly/zmXVV
https://oreil.ly/zmXVV
https://oreil.ly/4SW35
https://oreil.ly/07p8h
https://oreil.ly/B6TRI
https://oreil.ly/vX2mS
https://oreil.ly/hBnfg
https://oreil.ly/hBnfg

Обеспечивайте безопасность    461

Снабжайте тегами и тестируйте все, что
только возможно

•	 Теги помогают организовать выполнение сценариев. Они позво-
ляют запускать или пропускать части сценариев.

•	 Теги могут помочь в тестировании. Добавляйте задачи модульно-
го тестирования с помощью тега unitTest (https://oreil.ly/kBZYZ).

•	 Используйте Molecule (https://oreil.ly/iTjBY) для тестирования ролей;
проверяйте результаты.

Описывайте желаемое состояние
•	 Идемпотентность: одна и та же операция должна давать один и

тот же результат снова и снова .
•	 Гарантируйте, что ничего не изменится, если ничто не должно не

измениться.
•	 Никакой неопределенности: опишите желаемое состояние и ис-

пользуйте переменные для переключения состояния.
•	 Попробуйте поддерживать режим проверки.
•	 Тестируйте состояния, используя драйвер delegated: molecule converge

и molecule cleanup.

Доставляйте непрерывно
•	 Старайтесь планировать подготовку и развертывание как можно

раньше и как можно чаще.
•	 Используйте одни и те же сценарии в разных окружениях с раз-

ными учетными данными.
•	 Развертывайте изменения во всех окружениях поэтапно и макси-

мально наглядно с помощью Tower или Jenkins с ARA.
•	 Используйте ключевое слово serial для организации непрерывно-

го обновления.

Обеспечивайте безопасность
•	 Упростите управление зашифрованными переменными (https://

oreil.ly/15D7z).
•	 Не входите в систему с привилегиями root. Не используйте учет-

ные записи служб в интерактивном режиме.
•	 Создавайте пользователей и группы с минимальными привиле-

гиями.
•	 Не храните учетные данные в реестре.

https://oreil.ly/kBZYZ
https://oreil.ly/iTjBY
https://oreil.ly/15D7z
https://oreil.ly/15D7z

462    Глава 24. Практические рекомендации

•	 Шифруйте учетные данные и токены с помощью ansible-vault.
•	 Используйте идентификаторы шифрования для разных уровней

доступа.
•	 Документируйте все для облегчения аудита.
•	 Защищайте SSH (https://oreil.ly/gTwbw) и свои системы от атак.
•	 Запускайте ssh-audit (https://oreil.ly/BIJwU) для проверки криптозащи-

ты (https://oreil.ly/twN0f) SSH.
•	 Подумайте о возможности использования ключей SSH, подпи-

санных центром сертификации (https://oreil.ly/J1GUT).

Контролируйте развертывание
•	 Создавайте и храните пакеты программного обеспечения в репо-

зитории, таком как Nexus (https://oreil.ly/XOHiB) или Artifactory (https://
oreil.ly/kI9AZ).

•	 Выпуск программного обеспечения – это целостный этап, а не пе-
редача байтов.

•	 Управляйте конфигурацией приложений с помощью централизо-
ванной системы или рабочего процесса Git.

•	 Создавайте дымовые тесты, чтобы подтвердить запуск и прове-
рить правильный порядок запуска.

Оценивайте эффективность
Если вы руководитель команды, скрам-мастер, владелец продукта или
иной участник программного проекта, то вам понадобятся критерии
оценки. CALMS – это платформа, оценивающая способность внедрять
процессы DevOps, а также способ измерения успешности внедре-
ния. Джез Хамбл (Jez Humble), соавтор книги «The DevOps Handbook»
(IT Revolution Press)1, придумал аббревиатуру CALMS, которая озна-
чает «Culture, Automation, Lean, Measurement and Sharing» (культура,
автоматизация, бережливое производство, измерение и совместное
использование).

Набор ключевых показателей эффективности внедрения передового
опыта в области разработки программного обеспечения включает:

сотрудничество:
	 делятся ли члены команды техническими знаниями между собой

и насколько активно команда сотрудничает с другими команда-
ми для интеграции приложений и окружений?

1	 Джин Ким, Патрик Дебуа, Джон Уиллис и Джез Хамбл. «Руководство по DevOps». Манн, Иванов и
Фербер (МИФ), 2018. ISBN: 978-5-00100-750-0. – Прим. перев.

https://oreil.ly/gTwbw
https://oreil.ly/BIJwU
https://oreil.ly/twN0f
https://oreil.ly/J1GUT
https://oreil.ly/XOHiB
https://oreil.ly/kI9AZ
https://oreil.ly/kI9AZ

Заключительные слова    463

автоматизацию:
	 автоматизирует ли команда процесс развертывания приложений

и окружений?
культуру:
	 стремится ли команда к совершенствованию и использованию

передовых методов и общих принципов при создании и настрой-
ке приложений и окружений?

измерение:
	 подтверждает ли команда функциональные и нефункциональные

требования (автоматически) перед развертыванием приложений
в промышленном окружении?

совместное использование:
	 предоставляет ли и получает ли команда обратную связь, необхо-

димую для контроля над решениями, которыми она управляет?

Контрольные показатели
Надлежащего применения практических рекомендаций должно быть
достаточно для решения всех следующих проблем.

•	 Можно ли точно воспроизвести любое из окружений, включая
версию операционной системы, конфигурацию сети, стек ПО,
развернутое в ней приложение и его конфигурацию?

•	 Легко ли вносить дополнительные изменения в любой из отдель-
ных элементов и развернуть это изменение в любом или во всех
окружениях?

•	 Легко ли увидеть каждое изменение в конкретном окружении и
проследить его, чтобы точно определить, что это за изменение,
кто его внес и когда?

•	 Выполняются ли все действующие нормативные требования?
•	 Сможет ли каждый член команды с легкостью получить необхо-

димую информацию и внести изменения? Или наша стратегия
мешает эффективной доставке, увеличивая время цикла и ухуд-
шая обратную связь?

•	 Возникает ли ощущение энтузиазма у нового члена команды при
приеме на работу?

Заключительные слова
Написав все эти страницы, мы вряд ли можем утверждать, что вы сможе-
те изучить Ansible за два часа и на третий развернуть NGINX и Postgres,

464    Глава 24. Практические рекомендации

но после прочтения книги «Запускаем Ansible» вы можете попробовать
научить своих коллег тому, чему научились сами, или даже поделиться
демонстрационным проектом с группой единомышленников. Сооб-
щество Ansible является глобальным! Если вы решите присоединить-
ся к нему, то просто посетите страницу сообщества Ansible (https://oreil.
ly/7KNaF). Участники проекта Ansible часто посещают каналы IRC, GitHub,
Discord и Reddit для поддержки дискуссий и оказания помощи.

Если рядом с вами нет местной группы единомышленников, то соз-
дайте ее. Если она неактивна, то постарайтесь возродить ее. Именно
так Бас начал свою деятельность в группе Ansible Benelux Meetup в
2014 году. Встречи единомышленников – это отличный способ узнать
что-то новое и познакомиться с людьми, имеющими общие интере-
сы. Бас с теплотой вспоминает дискуссии, демонстрации и семинары,
которые проводились в разных местах Амстердама. Спасибо всем, кто
участвовал во встречах!

Дорогие читатели, мы надеемся, что вы получили то, что искали, и
достаточно узнали об Ansible, чтобы приступить к решению стоящих
перед вами задач.

Удачи!

https://oreil.ly/7KNaF
https://oreil.ly/7KNaF

Библиография

Barrett, Daniel, Richard Silverman and Robert Byrnes. SSH The Secure Shell:
The Definitive Guide. Sebastopol, CA: O'Reilly Media, 2005.

Bauer, Kirk. Automating UNIX and Linux Administration. New York: Apress,
2003.

Clark, Mike. Pragmatic Project Automation: How to Build, Deploy, and Monitor
Java Applications. Raleigh, NC: Pragmatic Bookshelf, 2004.

Conway, Damien. Perl Best Practices. Sebastopol, CA: O'Reilly Media, 2005.
Dobies, Jason, and Joshua Wood. Kubernetes Operators. Sebastopol, CA:

O'Reilly Media, 2020.
Duvall, Paul, Steve Matyas, and Andrew Glover. Continuous Integration:

Improving Software Quality and Reducing Risk. Upper Saddle River, NJ:
Pearson Education, 20071.

Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: Building and Scaling
High Performing Technology Organizations. Portland, OR: IT Revolution,
20182.

Geewax, JJ. Google Cloud Platform in Action. Shelter Island, NY: Manning
Publications, 2018.

Gift, Noah, and Jeremy Jones. Python for Unix and Linux System Administration.
Sebastopol, CA: O'Reilly Media, 20083.

Hashimoto, Mitchell. Vagrant: Up and Running. Sebastopol, CA: O'Reilly
Media, 2013.

Holzner, Steve. Ant: The Definitive Guide. Sebastopol, CA: O'Reilly Media, 2005.
Humble, Jeff, and David Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Upper Saddle River, NJ:
Pearson Education, 20114.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Boston, MA: Addison-Wesley, 20005.

1	 Поль М. Дюваль, Стивен Матиас и Эндрю Гловер. Непрерывная интеграция. Улучшение качества
программного обеспечения и снижение риска. Вильямс, 2016. ISBN: 978-5-8459-1408-8. – Прим.
перев.

2	 Форсгрен Николь, Хамбл Джез, Ким Джин. Ускоряйся! Наука DevOps: Как создавать и масшта-
бировать высокопроизводительные цифровые организации. Альпина PRO, 2022. ISBN: 978-5-
6042881-1-5. – Прим. перев.

3	 Ноа Гифт, Джереми М. Джонс. Python в системном администрировании UNIX и Linux. Сим-
вол-Плюс, 2009. ISBN: 978-5-93286-149-3. – Прим. перев.

4	 Джез Хамбл, Дейвид Фарли. Непрерывное развертывание ПО: автоматизация процессов сборки,
тестирования и внедрения новых версий программ (Signature Series). Вильямс, 2021. ISBN: 978-
5-8459-1739-3, 978-0-321-60191-9. – Прим. перев.

5	 Хант Э., Томас Д., Алексашин А. Программист-прагматик. Путь от подмастерья к мастеру. Лори,

466    Глава 24. Библиография

Jaynes, Matt. Taste Test: Puppet, Chef, Salt, Ansible. Self-published, 2014.
Kernighan, Brian, and Rob Pike. The UNIX Programming Environment. Hoboken,

NJ: Prentice Hall, 19841.
Kim, Gene, Jez Humble, Patrick DeBois, and John Willis. The DevOps Handbook:

How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. Portland, OR: IT Revolution, 20162.

Kleppmann, Martin. Designing Data-Intensive Applications. Sebastopol, CA:
O'Reilly Media, 20153.

Kurniawan, Yan. Ansible for AWS. Leanpub, 2016.
Limoncelli, Thomas A., Christina J. Hogan, and Strata R. Chalup. The Practice

of Cloud System Administration: Designing and Operating Large Distributed
Systems. Boston, MA: Addison-Wesley Professional, 2014.

Luksa, Marko. Kubernetes in Action. Shelter Island, NY: Manning Publications,
20184.

Mell, Peter, and Timothy Grance. The NIST Definition of Cloud Computing. NIST
Special Publication 800-145, 2011.

Morris, Kief. Infrastructure as Code: Dynamic Systems for the Cloud Age.
Sebastopol, CA: O'Reilly Media, 2021.

OpenSSH/Cookbook/Multiplexing, Wikibooks (http://bit.ly/1bpeV0y), October 28,
2014.

Oram, Andrew, and Steve Talbott. Managing Projects with Make. Sebastopol,
CA: O'Reilly Media, 1986.

Reitz, Kenneth, and Tanya Schlusser. The Hitchhiker's Guide to Python: Best
Practices for Development. Sebastopol, CA: O'Reilly Media, 20165.

Ryan, Mike, and Federico Lucifredi. AWS System Administration. Sebastopol,
CA: O'Reilly Media, 2018.

Shafer, Andrew Clay. Agile Infrastructure in Web Operations: Keeping the Data
on Time. Sebastopol, CA: O'Reilly Media, 2010.

Turnbull, James, and Jeffrey McCune. Pro Puppet: Maximize and Customize
Puppet's Capabilities for Your Environment. New York: Apress, 2011.

2016. ISBN 0-201-61622-х. – Прим. перев.
1	 Пайк Роб, Керниган Брайан У. Unix. Программное окружение. Символ-Плюс, 2003. ISBN: 5-93286-

029-4, 0-13-937681-X. – Прим. перев.
2	 Джин Ким, Патрик Дебуа, Джон Уиллис и Джез Хамбл. Руководство по DevOps. Манн, Иванов и

Фербер (МИФ), 2018. ISBN: 978-5-00100-750-0. – Прим. перев.
3	 Клеппман М. Высоконагруженные приложения. Программирование, масштабирование, под-

держка. Питер, 2023. ISBN: 978-5-4461-0512-0. – Прим. перев.
4	 Лукша М. Kubernetes в действии. ДМК-Пресс, 2019. ISBN: 978-5-97060-657-5. – Прим. перев.
5	 Шлюссер Таня, Рейтц Кеннет. Автостопом по Python. Питер, 2017. ISBN: 978-5-496-03023-6. –

Прим. перев.

http://bit.ly/1bpeV0y

Об авторах

Бас Мейер (Bas Meijer) – программист-фрилансер и консультант по
DevOps. По окончании университета в Амстердаме был одним из пер-
вопроходцев в веб-разработке в начале 1990-х. Затем работал в сфере
торговли, облачной безопасности, авиапромышленности и в правитель-
ственных организациях. Получил звание Ansible Ambassador в 2014 году
и HashiCorp Ambassador в 2020–2021.

Лорин Хохштейн (Lorin Hochstein) – ведущий инженер-програм-
мист в подразделении Chaos Team в компании Netflix, где занимает-
ся обеспечением высокой доступности служб Netflix. Соавтор книги
«OpenStack Operations Guide» (O'Reilly), а также множества академичес
ких публикаций.

Рене Мозер (René Moser) живет в Швейцарии со своей женой и тре-
мя детьми. Любит простые программы, которые легко масштабируют-
ся. Имеет диплом о высшем образовании в сфере информационных
технологий. Участвует в жизни сообщества программного обеспечения
с открытым кодом уже более 15 лет. В последнее время участвует в раз-
работке ASF CloudStack, а также занимается интеграцией CloudStack в
Ansible и написал уже более 30 модулей для поддержки CloudStack. Стал
членом основной команды разработчиков Ansible в апреле 2016 года и
в настоящее время работает старшим системным инженером в SWISS
TXT.

Об изображении на обложке

На обложке «Запускаем Ansible» изображена корова голштино-фриз-
ской породы (Bos primigenius), которую в Северной Америке часто
называют голштинской, а в Европе – фризской. Она была выведена в
Европе, в Нидердандах, с целью получить коров, питающихся исклю-
чительно травой – самый богатый ресурс в этом районе, – в результа-
те чего получилась черно-белая молочная порода. Голштино-фризская
порода была завезена в США где-то между 1621 и 1664 годом, но она не
вызывала интереса у американских селекционеров до 1830-х годов.

Животные этой породы отличаются крупными размерами, четки-
ми черными и белыми пятнами и высокой продуктивностью молока.
Черно-белая окраска является результатом искусственного отбора се-
лекционерами. Телята рождаются крупными, весом 40–45 кг; зрелые
голштинцы могут достигать в весе 580 кг и в холке до 1,5 м. Половая
зрелость у этой породы наступает в возрасте 13–15 месяцев; срок бере-
менности длится 9,5 месяца.

Коровы этой породы дают в среднем 7600 л молока в год; продуктив-
ность племенных животных может достигать 8100 л в год, а в течение
жизни могут производить до 26 000 л.

В сентябре 2000 года голштинцы оказались в центре жарких дискус-
сий, когда компания Hanoverhill Starbuck клонировала одно животное
из замороженных клеток соединительной ткани, взятых у него за месяц
до смерти. Клонированный экземпляр появился через 21 год и 5 меся-
цев после рождения оригинала.

Многие животные, изображенные на обложках книг издательства
O’Reilly, находятся под угрозой вымирания; все они очень важны для
биосферы.

Изображение для обложки взято из второго тома энциклопедии Ли-
деккера (Lydekker) «Royal Natural History».

Предметный указатель

Символы
/etc/ansible/facts.d каталог 122
-e var=value параметр 126
--start-at-task флаг 246
--step флаг 246
--vault-password-file параметр 236
-v флаг 226
~ префикс регулярных выражений 238

A
acl пакет 194
Active Directory 268
add_file_common_args параметр 381
add_host модуль 108
aliases параметр 376,  377
all группа 68
all шаблон 238
always выражение 232
amazon.aws.ec2_group модуль 343
amazon.aws.ec2_instance модуль (Amazon EC2) 340
amazon.aws rjkktrwbz 345
amazon.aws коллекция 335
Amazon EC2 102,  321,  330

выгрузка открытого ключа 342
ожидание запуска сервера 348
пары ключей 342
переменные окружения 333
получение последней версии AMI 345
создание виртуального частного облака 351
создание нового ключа 342
терминология 330

образ машины Amazon (AMI) 330
теги 331
экземпляр 330

Anaconda мастер установки 313
Ansible

введение 20
версия для разработчиков 37
дополнительные зависимости 36
запуск CI для ролей 432
запуск в контейнерах 455

создание сред выполнения 456

Ansible Inc. 32
императивное достижение желаемого

состояния 328
и управление версиями 44
как работает 23
область применения 22
откуда взялось название 21
подготовка локальной версии 49
преимущества 24

возможность масштабирования вниз 25
воспроизводимость 31
встроенные модули 27
защищенный транспорт 31
идемпотентность 32
многоуровневая оркестрация 28
настоящая масштабируемость 30
не требует установки на удаленных хостах 25
отсутствие ведущего узла 29
поддержка плагинов 29
поддержка широкого круга задач 30
принудительно выполняет настройки 28
простота абстракций 26
простота аудита 25
простота распространения 26
простота синтаксиса 25
самодкументирующийся код 31
шифрование переменных 31
выполнение задач сверху вниз 27
эквивалентность создаваемых окружений 31

примечание о версиях 21
установка и настройка 35

ansible all -vvvv -m ping команда 173
Ansible Automation Controller

REST API 449
Ansible Automation Platform 439

запуск сценария с помощью шаблона
задания 454

пробная версия 443
проекты 445
решаемые задачи 444

запуск заданий из шаблонов 447
управление инвентаризацией 446

создание реестра 453

470    Предметный указатель

ansible-builder 37,  456
Ansible Builder 456
ansible.cfg файл 43
ansible_check_mode встроенная переменная 124
ansible_connection 410
ansible-core 35
ansible_distribution факт 110
ansible-doc -t lookup -l команда 213
ansible-doc инструмент командной строки 70

ansible-doc -l команда 308
ansible-doc -t callback -l команда 356
ansible-doc -t callback <имя_плагина> команда 361

ansible_enp0s8 факт 223
ansible_env факт 240
ansible_eth1.ipv4.address факт 124
ansible_facts ключ 120
ansible_facts переменная 118

IP-адреса хостов 241
ANSIBLE_FILTER_PLUGINS переменная

окружения 212
ANSIBLE_FORKS переменная окружения 405
Ansible Galaxy 201

веб-интерфейс 201
инструмент командной строки 202

вывод списка ролей 202
удаление роли 203
установка роли 202

поиск и установка коллекций 306
ansible-galaxy collection install команда 307
ansible-galaxy инструмент командной строки

настройка нескольких серверов 440
создание роли Ansible 292
управление коллекциями 309

ansible-galaxy команда 199
ansible-later 301
ansible-lint 79,  299
ansible_local переменная 122
ansible-lockdown 413
AnsibleModule класс на Python 373

анализ аргументов 375
импортирование 376
параметры метода инициализатора 379

ANSIBLE_NOCOWS переменная окружения 61
Ansible Operators 274
ansible_play_batch встроенная переменная 124
ansible-playbook команда 60,  81

--check флаг 184

--diff флаг 184
--flush-cache параметр 402
force_source: true параметр 279
--limit флаг 186
--list-tasks параметр 135
--list-tasks флаг 183
--start-at-task флаг 246
--syntax-check параметр 298
--syntax-check флаг 182
--tags first аргумент 247
--user флаг 176
параметр --start-at-task 69
флаги -l и --limit 239

ansible_play_hosts встроенная переменная 124
ansible_role_ansible 415
ANSIBLE_ROLES_PATH переменная окружения 188
ansible_role_ssh 415
ansible-runner 456
Ansible Runner инструмент 29
Ansible Tower 436

версия с открытым исходным кодом 443
плагин для Jenkins 421

Ansible Tower CLI 451
ansible_user переменная 176
ANSIBLE_VAULT_PASSWORD_FILE переменная

окружения 236,  332
ansible-vault команда 234,  235
ansible_version встроенная переменная 124
ansible web -vvv -m ping команда 172
Ansible и Docker 276
ansible команда 42

установка сервера NGINX 46
флаг -vvvv 42
флаги -a и -m 69
флаги b и --become 45

Apache CloudStack 231
apt-cache программа 140
apt-get update команда 141
apt диспетчер пакетов 139
apt модуль 139

cache_valid_time аргумент 141
ARA Records Ansible 357
argument_spec параметр 379
assert модуль 179
authorized_keys модуль 175
Automation Controller 442
Automation Controller 4 439

Предметный указатель    471

Automation Hub 439
AWS_ACCESS_KEY_ID переменная окружения 321,  332
AWS (Amazon Web Services) 326
aws_centos_image переменная 321
AWS_REGION переменная окружения 341
AWS_REGION переменная окружения 321
AWS_SECRET_ACCESS_KEY переменная

окружения 332
AWS_SECRET_ACCESS_KEYпеременная

окружения 321
AWX 443
AWX.AWX 451

создание организации 452
установка 451

Azure 319,  328
группа ресурсов и учетная запись хранилища 319
идентификатор подписки Subscription ID 319

B
Bash

создание модуля на 389
become выражение

добавление become: true в задачу 140
become параметр (в операциях) 68
binary_data параметр 384
block выражение

обработка ошибок с помощью 230
определение аргументов и условий для задач 230

Boto3 библиотека для Python 333
Bourne Shell командная оболочка 89
build_ignore фильтр 310
bypass_checks параметр 382

C
callback_enabled параметр 360
callback_whitelist параметр 360
Canonical 345
can_reach модуль 368

реализация на Python 373
CentOS 7 322
changed_when выражение 205
changed_when ключевое слово 115
changed ключ 115
check_invalid_arguments параметр 380
check_rc параметр 383
chmod +x команда 101

Chocolatey диспетчер пакетов 269
Chocolatey диспетчер пакетов для Windows 266
choices параметр 376,  377
clear_facts команда 254
clear_host_errors команда 254
close_fds параметр 383
cmd ключ 115
CNAME запись (DNS) 217
collections ключевое слово 307
collectstatic команда 153
command модуль 44,  115
configuration-as-code (casc) 429
connection: local

выражение 248
ControlMaster 393,  395
ControlPath 393,  395
ControlPersist 393,  395
copy модуль 198

validate выражение 400
cowsay программа 61
createdb команда 153,  205
crontab -l команда 161
crypto_policy: STRICT 417
Curve25519 криптографическая эллиптическая

кривая 397
cwd параметр 384

D
database_host переменная 287
database_name переменная 189
database_user переменная 189
database, роль для развертывания базы данных 191
data параметр 383
db_pass переменная 150,  194
debugger ключевое слово 177
debug vjlekm 177
debug модуль 114
debug плагин 170
defaults каталог 188
default параметр 376,  377
default фильтр (Jinja2) 208,  209
delegated драйвер (Molecule) 291
delegate_to выражение 239

использование с Nagios 242
deprecated_aliases параметр 376
desired_state переменная 293
division функция 231

472    Предметный указатель

Django
пример развертывания приложения 92

django_manage команда 153
django-manage команды 205

changed_when и failed_when выражения 205
DJANGO_SETTINGS_MODULE переменная

окружения 156
Django-приложения

тестовое приложение Mezzanine 130
DNS

преобразование доменных имен в IP-адреса 217
dnspython пакет 217
Docker 312,  428

API удаленного управления 274
жизненный цикл приложения 275
контейнеры как строительные блоки 274
образ Docker GCC 11 323
подготовка 49
реестр общедоступных образов контейнеров 274

Docker Compose инструмент 281
docker_compose модуль 281,  282
docker_container модуль 277

cleanup параметр 289
документация 276

Dockerfile 278,  312
Docker Hub 275
docker_image_info модуль 283
docker_image модуль 279
Docker, Inc. 274
docker_login модуль 280
docker драйвер (Molecule) 296
docker инструмент командной строки 277

docker ps команда 277
domains переменная 150,  211

E
ec2_ami_info vjlekm 345
ec2_vpc_igw модуль 353
ec2_vpc_net модуль 353
ec2_vpc_route_table модуль 353
ec2_vpc_subnet модуль 353
ec2 модуль 348
EDITOR переменная окружения 235
elements параметр 376
end_batch команда 254
end_host команда 254
end_play команда 254

enp0s8 интерфейс 223
environment выражение 154
error_on_missing_handler параметр 259
executable параметр 90,  383

F
Fabric

сценарий развертывания тестового приложения
Mezzanine 132

fact_caching реализация 402
failed_when выражение 205

failed фильтр в аргументе 209
fail выражение 205
fallback параметр 376
file задача 229
file модуль 159
file подстановка

использование как конструкции циклического
выполнения 223

FilterModule класс 212
filter_plugins каталог 211
FIPS:OSPP криптополитика 415
flush_handlers команда 253
for цикл 151
free стратегия 249

G
gather_facts выражение 401
Ghost пример применения 277
Gitea 421,  423
git модуль 142
Git система управления версиями

.gitignore файл в репозитории Git 138
извлечение проекта из репозитория Git 141

Google Cloud Platform (GCP) 317
Google Kubernetes Engine 274
Go Operators 274
Goss 302
group_by модуль 110
group_names встроенная переменная 124
groups встроенная переменная 124,  125
group_vars/all/next каталог 235
group_vars каталог 99
Gunicorn (сервер приложений) 133

H
handlers каталог 188
HashiCorp Terraform 328

Предметный указатель    473

Helm Charts 274
hostmanager плагин (Vagrant) 50
hostvars встроенная переменная 123,  124
host_vars каталог 99
HTTP

сервер разработки для Mezzanine 133

I
ignore_errors выражение 240
ignore_errors ключевое слово 116
image_id параметр (Amazon EC2) 341
include_role выражение 229
include_role ключевое слово 227
include_tasks ключевое слово 227
include_vars ключевое слово 227
INJECT_FACTS_AS_VARS параметр 118
insecure_private_key файл 215
instance_type параметр (Amazon EC2) 341
inventory_hostname_short встроенная

переменная 124
inventory_hostname встроенная переменная 124,  125
inventory_hostname переменная 59
IP-адреса 151

J
Java

Jenkins 426
машина для разработки на Java 267

Jenkins 421,  426
и Ansible 428

конфигурация Jenkins как код 428
Jinja2 механизм шаблонов 75

официальная документация 76
job-dsl плагин 431
join фильтр (Jinja2) 211
JSON

файл с настройками гостевых систем 52
junit плагин 362

K
Kerberos 262
key_name параметр (Amazon EC2) 341
Kickstart 312
Kubernetes 274

L
label выражение 225

length фильтр (Jinja2) 180
listen выражение 255
locale_gen модуль 148
loop ключевое слово 220

M
manage.py poll_twitter команда 161
manage.py сценарий 152
max_fail_percentage выражение 230,  244
meta каталог 188
meta модуль

принудительный запуск обработчиков 253
mezzanine

организация устанавливаемых файлов 136
mezzanine, роль для развертывания Mezzanine 195
Mezzanine система управления контентом 130
Mezzanine (тестовое приложение)

развертывание с помощью Ansible
вывод списка задач 135

развертывание с помощью ролей 189
Microsoft Azure Resource Manager 447
migrate команда 153
Miniconda 295
Mitogen для Ansible 401
Molecule 290,  455

команды 297
сценарии 293
управление контейнерами 295
установка и настройка 290

molecule cleanup команда 293
molecule converge команда 293,  298
molecule init rjvfylf 298
molecule lint команда 299
molecule prepare команда 298
molecule test команда 293
msg переменная 373
mutually_exclusive параметр 376,  380

N
Nagios система мониторинга 242
nevercache_key переменная 150
NGINX

веб-сервер 133
как реверсивный прокси 134
пример сценария для установки и настройки

веб-сервера 57
создание шаблона с конфигурацией 75

474    Предметный указатель

установка в Ubuntu командой ansible 46
no_log параметр 376,  379
notify выражение 255
npm start команда 287
NTP (Network Time Protocol) протокол сетевого

времени 200

O
OpenShift Online 274
OpenSSH 177,  392
openssl команда 161

chdir параметр 161
options параметр 376
OSPP 414

P
Packer 416

создание образов 312
Vagrant VirtualBox VM 312

сценарий Ansible 322
Paramiko библиотека 106
params словарь 375
PasswordAuthentication no 175
path_prefix параметр 384
ping модуль, вызов 42
pip freeze команда 145
pip модуль

установка пакетов Python 143
postgresql_db модуль 148
postgresql_user модуль 148
PostgreSQL база данных 133
PowerShell 263

Get-WindowsFeature 269
определение версии 264
сценарий для установки поддержки Ansible

в Windows 265
PreferredAuthentications 397
pre_tasks и post_tasks

обработчики в 251
Private Automation Hub в Ansible Automation

Platform 2 440
proj_name переменная 150
ProxyJump настройка хоста-бастиона 177
PublicKeyAuthentication 397
Python

Boto3 библиотека 333
Molecule, фреймворк тестирования ролей

Ansible 290

WinRM библиотека 262

R
rc ключ 115
Red Hat

Quay реестр 275
Red Hat Ansible Automation Platform 306
Redis 212

имитация кластера Redis Sentinel в CentOS 7 296
refresh_inventory команда 254
region параметр (Amazon EC2) 341
register выражение 205
register ключевое слово 114
registry_url параметр (модуля docker_login) 280
remote_user переменная 176
repo_url переменная 142
required_by параметр 376
required_if параметр 376
required_one_of параметр 376,  381
required_together параметр 376
required параметр 376
requirements.txt файл 144
requirements.yml файл 308
requiretty 399

disable-requiretty.yml файл 400
rescue выражение 232
restart nginx обработчик 156
restart supervisor обработчик 156
RESTful API 449
result.out переменная 208
roles_path параметр 188
root пользователь 45

S
script модуль 198

использование вместо написания собственных
модулей 368

secret_key переменная 150
secrets.yml файл для тестового приложения

Mezzanine 138
security_group параметр (Amazon EC2) 341
serial выражение 230,  243

передача числа хостов 244
service_facts модуль 121
set_fact модуль 123
setup модуль 119

использование для сбора фактов вручную 240
параметр filter 120

Предметный указатель    475

shebang (#!) 83
shell модуль 115
sleep_seconds переменная 248
SOAP-подобный протокол поверх HTTPS 262
SonarQube 421,  425
Sonatype Nexus 275
Sonatype Nexus3 421
SSH

vagrant ssh-config команда 39,  87
еще о настройке

рекомендации о выборе плгоритмов 396
использованию одного ключа для всех хостов

в Vagrant 86
клонирование репозитория 142
порядок работы с закрытыми ключами в Va-

grant 40
ssh-add команда 142
ssh-agent команда 142
ssh_args 397
ssh-audit 416
ssh-copy-id команда 175
sshd_config 397
ssh-keygen команда 176,  397
ssh -v команда 172
ssl_certs_changed событие 260
ssl роль 260
stat модуль 116

вызов и проверка условий 181
stderr ключ 115
stdout_callback параметр 356
stdout_lines ключ 115
stdout ключ 115
StrictHostKeyChecking параметр 176
sudo инструмент 45
sudo утилита 399
Supervisor диспетчер процессов 134
surround_by_quotes функция 212

T
t2.micro тип экземпляра (Amazon EC2) 341
Tailscale VPN 177
tasks_from выражение 229
tasks каталог 188
TCP-сокеты 278
templates каталог 188
template модуль 161,  198,  214
TestInfra 304

tls_enabled переменная 157
TLS (Transport Layer Security) 72
tower_inventory 453
tower_inventory_source 453
tower_project модуль 453
try-except-finally парадигма 231
TXT запись (DNS) 217
type параметр 376,  378

U
Ubuntu

обновление кеша диспетчера пакетов apt 140
until ключевое слово 220
uri модуль 79
use_unsafe_shell параметр 384

V
Vagrant

Vagrantfile 51
запуск виртуальной машины Windows в Virtual-

Box 295
запуск различных дистрибутивов Linux в

VirtualBox 51
плагины 50
подготовка серверов для экспериментов 37
создание образов с помощью Packer 315
удобные настройки

переадресация портов 47
vagrant destroy --force команда 85
vagrant destroy команда 46
vagrant ssh команда 39
vagrant status команда 104
vagrant up focal команда 53
vagrant up --provision команда 50
vagrant up команда 50
vagrant драйвер (Molecule) 295
vars_files секция 112
vars каталог 188
vars секция 112
Vault

шифрование конфиденциальных данных 234
Vault-ID идентификатор шифрования 236
VirtualBox 38

настройка 51

W
wait_for модуль 348,  367
wait параметр 348

476    Предметный указатель

win_chocolatey модуль 267
Windows для Linux (WSL2), подсистема 36
Windows-хосты, управление 262

PowerShell 263
управление обновлениями безопасности 271

win_ping модуль 265
win_user модуль 269
with_dict конструкция циклического выполнения 222
with_items выражение 221
with_lines конструкция циклического выполнения 221

Y
YAML 61

конец документа (...) 62
начало документа (---) 62
отступы и пробельные строки 62
синтаксис определения аргументов для

модулей 70
yamllint 299
yamllint инструмент 66
yaml плагин 356

А
автоматизация 463
агенты сборки 430
активация конфигурации NGINX 159
архитектура Ansible Automation Platform 2 441
асинхронное выполнение задач с помощью

async 406

Б
базы данных

настройка машины с MySQL 284
базы данных управления конфигурациями (Configu-

ration Management DataBases, CMDB) 101
безопасность 412

защищено, но не безопасно 414
нулевое доверие 419
солнечные ИТ-ресурсы 418
теневые ИТ-ресурсы 418

блоки
в YAML 65

блочные хранилища 327
булевы выражения в YAML 63

В
веб-серверы

развертывание 286
верификаторы 301

Ansible 301
Goss 301
TestInfra 301

виртуализация
аппаратного обеспечения 273
как форма контейнеризации 273
операционной системы 273

виртуальные частные облака (Virtual Private Cloud,
VPC) 339

восьмеричные числа 144
вывод значений переменных 113
вывод списка задач в сценарии 135
выполнение обработчиков по событиям 255

случай SSL 256
высокая модульность 458
высокая ценность возможностей 458

Г
гипервизоры 38,  273
группы 90

группировка групп 95
группы безопасности

Amazon EC2
параметры 344

Д
декларативная модель желаемого состояния

ресурсов 328
диапазоны 96
динамическая инвентаризация

Amazon EC2 334
и VPC 355

диспетчер ресурсов Azure 102
диспетчеры пакетов

Conda 294
документация

по модулям Ansible 70
домашние питомцы и стадо 96
доставляйте непрерывно 461
драйверы 291

драйверы для Molecule и их зависимости 291

Ж
желаемое состояние 293

Предметный указатель    477

З
зависимости

в проектах Python 144
пример файла requirements.txt 145

зависимые роли 200
задачи

в операциях 69
выбор для запуска 246
выполнение на управляющей машине 239
однократный запуск 245
фильтры для возвращаемых значений 210

запрос информации о локальном образе 283
запуск контейнера Docker на локальной машине 277
запуск примера сценария для установки и

настройки сервера NGINX 60
запуск сценариев на Python в контексте

приложения 153
запуск сценария на машине Vagrant 167
зарегистрированные переменные 114
значения истинности в сценариях 63

И
идентификатор ключа доступа (access key ID) 332
изменение сценария для поддержки TLS 72
измерение 463
импортирование и подключение 227

include_tasks ключевое слово 227
динамическое 228
задач с идентичными аргументами 227
подключение ролей 228

интеллектуальная автономия 418
интеллектуальный сбор фактов 402
интерполяция переменных 113
интерпретаторы 90
инфраструктура как услуга (Infrastructure as a

Service, IaaS) 326
использование ролей в сценариях 189

К
каталоги

структура каталогов для Ansible 38
структура каталогов коллекций 309

качество кода 425
коллекции 291,  306

вывод списка 308
использование в сценариях 309
поддержки облачных служб 329

пространства имен 307
разработка 309

команды 205
выполнение по одной 246
отладчика 178

комментарии в YAML 62
конвейерный режим

включение 398
конкатенация строк с помощью оператора + 217
контейнеризация 273
контейнеры

запуск Ansible в 37
запуск в Kubernetes 274
удаление контейнеров 289

контролируйте развертывание 462
контрольные показатели 463
конфигурация

проверка перед перезапуском 254
криптополитика FIPS 415
культура 463
кеширование реестра

Amazon EC2 336
кеширование фактов 401

М
метакоманды 254
модели подписки 442
модули 70

docker_* 274
вызов внешних команд 383
документация для 70
имена и аргументы в задачах 69
поддержки Windows 266

мультиплексирование SSH и ControlPersist 392
включение мультиплексирования SSH

вручную 393

Н
настройка конфигурационных файлов служб 156
настройка промышленного окружения 54
настройки

настройки Vagrant 46
непрерывная интеграция и непрерывная доставка

(Continuous Integration/Continuous
Delivery, CI/CD) 421

непрерывная интеграция 421
обкатка 434

478    Предметный указатель

О
обеспечивайте безопасность 461
область применения Ansible 22
облачная инфраструктура 326

интерфейсы пользователей 326
подготовка 327

облачные образы 316
обработчики 77

важные факты о 78
улучшенные 251

образ машины Amazon (Amazon Machine Image,
AMI) 330

образы
виртуальная машина Azure 319
виртуальная машина Google Cloud Platform 317
объединение Packer и Vagrant 315
создание с помощью Packer 312

образы контейнеров 312
и образы виртуальных машин 274
отправка в реестр 280
создание 275

описывайте желаемое состояние 461
организуйте контент 459
отделяйте реестры от проектов 459
отделяйте роли и коллекции 459
отладка сценариев 170

debug задача 205
debug модуль 177
информативные сообщения об ошибках 170
ошибки SSH-подключения 171
проверка сценария перед запуском 182
типичные проблемы с SSH 175

подключение с учетными данными другого
пользователя 176

оформляйте код 460
оценивайте эффективность 462

П
пакетная обработка хостов 244
параллелизм 405
переадресация агента

включение на машине Vagrant 48
переадресация портов (Vagrant) 47
переменные

в операциях внутри сценариев 69
встроенные 123
в шаблоне конфигурации NGINX 76

вывод и изменение 179
доступ к ключам словаря в 118
определение в отдельных файлах 112
скрытые переменные 137
структура каталогов 113
установка из командной строки 126

переменные окружения
настройки для Windows 270

переменные, поддерживаемые отладчиком 178
переменные хостов и групп

внутренняя сторона реестра 96
плагин Ansible для Jenkins 435
плагин динамического реестра для EC2 330
плагины

фильтры 211
плагины обратного вызова 356

плагины стандартного вывода 356
плагины стандартного вывода

debug 358
default 359
dense 359
json 359
minimal 359
null 359
oneline 359

плагины стратегий 401
плагины уведомлений и агрегирования 360

foreman 361
jabber 361
junit 362
logentries 363
log_plays 363
logstash 363
mail 363
profile_roles 364
profile_tasks 364
say 365
slack 365
splunk 365
timer 366

платформа как услуга (Platform as a Service, PaaS) 327
поведенческие параметры хостов в реестре 88

ansible_connection 89
ansible_*_interpreter 90
ansible_python_interpreter 89
ansible_shell_type 89
переопределение значений по умолчанию 90

Предметный указатель    479

подключение к демону Docker 276
подстановка переменных 112
подстановки 212

ansible.builtin 213
csvfile 216
dig 217
env 215
file 214
password 215
pipe 215
redis 218
template 216
вызов с помощью функции lookup 214
как конструкции циклического выполнения 221
написание собственного плагина 219
управление циклами 224

выбор имени переменной цикла 224
пользователи

добавление в Windows 268
порты

в именах хостов 95
предварительные и заключительные задачи 190
проверка достоверности файлов 400
проверка ключей хоста 143
программное обеспечение как услуга (Software

as a Service, SaaS) 327
простота 458
псевдонимы

для имен хостов 95

Р
развертывание

развертывание Mezzanine с помощью Ansible 135
настройка базы данных 148
организация устанавливаемых файлов 136
создание файла local_settings.py из

шаблона 149
установка Mezzanine и других пакетов в

virtualenv 143
установка большого количества пакетов 139
устранение проблем 168

сложности развертывания в промышленном
окружении 130

развертывание базы данных Ghost 285
развертывание приложения в контейнере Docker 284
разрешения для файлов 144
реестр 84

inventory/hosts файлы 85
деление на несколько файлов 107
динамический 101

интерфейс сценария динамического
реестра 102

использование модуля add_host 108
написание сценария динамического

реестра 104
плагины поддержки 101

несколько машин Vagrant 85
передача информации о сервере в Ansible 40
переменные хостов и групп 98
файл реестра хостов 85

реестр сетевых устройств 411
реестры 275
режим проверки 384
роли 187

базовая структура 187
два разных способа определения переменных 194
как поделиться 204
местоположение 188
создание 292
создание для нескольких ОС 267
требования к оформлению 203

С
самоподписанные сертификаты

создание 161
секретный ключ доступа (secret access key) 332
Сервер CI 426

Jenkins, как стандарт де-факто 426
серверы

описание 85
подготовка для экспериментов 37

сертификаты
недоверие в некоторых браузерах 82
отключение проверки для сервера WinRM 265
создание сертификата TLS 72

сети 408
Ansible Connection для автоматизации

управления сетевыми устройствами 410
привилегированный режим 410
примеры использования автоматизации

управления сетевыми устройствами 412
синтаксис ссылки на переменные {{ }} 73
система управления контентом (Content Manage-

ment System, CMS)

480    Предметный указатель

Mezzanine 130
слабая связанность 458
словари

в YAML 65,  66
обход с помощью конструкции with_dict 222

собственные модули 367
возврат признака успешного завершения или

неудачи 383
вызов 371
где хранить 370
документирование 385
как Ansible вызывает модули 370
когда следует разрабатывать 369
копирование на хост 370
ожидаемый вывод 372
отладка 387
пример, проверка доступности удаленного

сервера 367
совместное использование 463
создание веб-страницы 59
создание группы веб-серверов 59
сотрудничество 462
списки

в YAML 64
статический анализ (линтинг) 298
стратегии 247
строки

в YAML 62
заключение в кавычки с помощью фильтра 211
использование кавычек 73
передача аргументов в модули 146

сценарии 56
запуск 81
проверка 79
синтаксис YAML 61
сложные 205

фильтры 209
структура 66

операции 67
хосты 68

тестирование 78

Т
теги

запуск действий с тегами 246
определение динамическийх групп (Amazon

EC2) 337

присваивание имеющимся ресурсам (Amazon
EC2) 337

точечная нотация
доступ к переменным в словарях YAML 100

У
уведомление обработчиков из обработчиков 254
управление виртуальными машинами 295
управление доступом 444
управление несколькими контейнерами на

локальной машине 281
управление хостами, задачами и обработчиками 238
ускорение работы Ansible 392

еще о настройке SSH 396
установка задания cron для Twitter 161
установка сертификатов TLS 160

Ф
файл конфигурации NGINX 58
файл реестра

ini-формат 41
переменные с настройками соединения с

Windows 263
файлы

with_fileglob конструкция циклического
выполнения 222

факты 110,  112,  118
ansible_ префикс 118
_info имена, оканчивающиеся на 121
вывод подмножества фактов 120
кеширование

в Memcached 404
в Redis 403
в файлах JSON 403

локальные 122
могут возвращаться любым модулем 121
просмотр всех фактов 119
сбор вручную 240

фильтры 209
basename 210
dirname 210
expanduser 210
realpath 210

Х
хост-бастион 177
хосты

Предметный указатель    481

в операциях 68
настройка конвейерного режима 398,  399
ограничение перечня обслуживаемых 239
отслеживание состояния хостов 71
ошибка проверки ключа хоста 176
получение IP-адресов 240
последовательное выполнение задачи на

хостах по одному 242
список хостов для выполнения сценария 183

Ц
циклы 77,  220

управление выводом 225

Ч
частные сети 177

Ш
шаблонные символы 120
шаблоны 238

создание файла authorized_keys с помощью
подстановки 214

шаблоны для выбора хостов 238
шифрование с использованием разных паролей 236

Э
экземпляры

запуск новых (Amazon EC2) 340
экземпляры (EC2) 330

Бас Мейер, Лорин Хохштейн и Рене Мозер

Запускаем Ansible

Простой способ автоматизации управления
конфигурациями и развертыванием приложений

Третье издание

	 Главный редактор	 Мовчан Д. А.
dmkpress@gmail.com

	 Перевод с английского	 Киселев А. Н.
	 Корректор	 Абросимова Л. А.
	 Верстка	 Паранская Н. В.
	 Дизайн обложки	 Мовчан А. Г.

Формат 70×1001/16.
Печать цифровая. Усл. печ. л. 39,16.

Тираж 200 экз.

Веб-сайт издательства: www.dmkpress.com

Книги издательства «ДМК ПРЕСС» можно купить оптом и в розницу
в книготорговой компании «Галактика»

(представляет интересы издательств
«ДМК ПРЕСС», «СОЛОН ПРЕСС», «КТК Галактика»).

Адрес: г. Москва, пр. Андропова, 38;
Тел.: +7(499) 782-38-89. Электронная почта: books@alians-kniga.ru.

При оформлении заказа следует указать адрес (полностью),
по которому должны быть высланы книги;

фамилию, имя и отчество получателя.
Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине:
www.galaktika-dmk.com.

mailto:dmkpress@gmail.com
http://www.dmkpress.com

	Предисловие
к третьему изданию
	Глава 1
	Введение
	Примечание о версиях
	Ansible: область применения
	Как работает Ansible
	Какие преимущества дает Ansible?
	Простота
	Широта возможностей
	Защищенность

	Не слишком ли проста система Ansible?
	Что я должен знать?
	О чем не рассказывается в этой книге
	Поехали!

	Глава 2
	Установка и настройка
	Установка Ansible
	Дополнительные зависимости
	Запуск Ansible в контейнерах
	Версия Ansible для разработчиков

	Подготовка сервера для экспериментов
	Использование Vagrant для подготовки сервера
	Передача информации о сервере в Ansible
	Упрощение задачи с помощью файла ansible.cfg
	Остановка тестового сервера

	Удобные настройки Vagrant
	Переадресация портов и частные IP-адреса
	Включение переадресации агента

	Подготовка Docker
	Подготовка локальной версии Ansible
	Когда запускаются сценарии провайдеров
	Плагины Vagrant
	vagrant-hostmanager
	vagrant-vbguest

	Настройка VirtualBox
	Vagrantfile – это Ruby
	Настройка промышленного окружения
	Заключение

	Глава 3
	Сценарии: начало
	Подготовка
	Очень простой сценарий
	Файл конфигурации NGINX
	Создание веб-страницы
	Создание группы веб-серверов
	Запуск сценария

	Сценарии пишутся на YAML
	Начало файла
	Конец файла
	Комментарии
	Отступы и пробельные строки
	Строки
	Булевы выражения
	Списки
	Словари
	Многострочные строковые значения
	Чистый YAML вместо строковых аргументов

	Структура сценария
	Операции
	Задачи
	Модули
	Документация по модулям Ansible
	Резюме

	Есть изменения? Отслеживание состояния хоста
	Становимся знатоками: поддержка TLS
	Создание сертификата TLS
	Переменные
	Когда использовать кавычки в строках Ansible
	Создание шаблона с конфигурацией NGINX
	Циклы
	Обработчики
	Несколько фактов об обработчиках,
которые необходимо помнить
	Тестирование
	Проверка
	Сценарий
	Запуск сценария

	Заключение

	Глава 4
	Реестр: описание серверов
	Файл реестра
	Вводная часть: несколько машин Vagrant
	Поведенческие параметры хостов в реестре
	Переопределение значений по умолчанию в поведенческих параметрах

	Группы, группы и еще раз группы
	Пример: развертывание приложения Django
	Псевдонимы и порты
	Группировка групп
	Имена хостов с номерами
(домашние питомцы и стадо)

	Переменные хостов и групп: внутренняя сторона реестра
	Переменные хостов и групп: создание собственных файлов
	Динамический реестр
	Плагины поддержки реестров
	Амазон EC2
	Диспетчер ресурсов Azure
	Интерфейс сценария динамического реестра
	Написание сценария динамического реестра

	Деление реестра на несколько файлов
	Добавление элементов во время выполнения с помощью add_host и group_by
	add_host
	group_by

	Заключение

	Глава 5
	Переменные и факты
	Определение переменных в сценариях
	Определение переменных в отдельных файлах
	Структура каталогов

	Вывод значений переменных
	Интерполяция переменных

	Регистрация переменных
	Факты
	Просмотр всех фактов, доступных для сервера
	Вывод подмножества фактов
	Любой модуль может возвращать факты
	Локальные факты
	Использование модуля set_fact для задания новой переменной

	Встроенные переменные
	hostvars
	inventory_hostname
	groups

	Установка переменных из командной строки
	Приоритет

	Заключение

	Глава 6
	Введение в Mezzanine:
тестовое приложение
	Почему сложно развертывать приложения в промышленном окружении
	База данных PostgreSQL
	Сервер приложений Gunicorn
	Веб-сервер NGINX
	Диспетчер процессов Supervisor
	Заключение

	Глава 7
	Развертывание Mezzanine с помощью Ansible
	Вывод списка задач в сценарии
	Организация устанавливаемых файлов
	Переменные и скрытые переменные
	Установка большого количества пакетов
	Добавление выражения become в задачу
	Обновление кеша диспетчера пакетов apt
	Извлечение проекта из репозитория Git
	Установка Mezzanine и других пакетов в virtualenv
	Короткое отступление: составные аргументы задач
	Настройка базы данных
	Создание файла local_settings.py из шаблона
	Выполнение команд django-manage
	Запуск своих сценариев на Python в контексте приложения
	Настройка конфигурационных файлов служб

	Активация конфигурации NGINX
	Установка сертификатов TLS
	Установка задания cron для Twitter
	Сценарий целиком
	Запуск сценария на машине Vagrant
	Устранение проблем
	Не получается извлечь файлы из репозитория Git
	Недоступен хост с адресом 192.168.33.10.nip.io
	Bad Request (400)

	Заключение

	Глава 8
	Отладка сценариев Ansible
	Информативные сообщения об ошибках
	Отладка ошибок с SSH-подключением
	Типичные проблемы с SSH
	PasswordAuthentication no
	Подключение по SSH с учетными данными другого пользователя
	Ошибка проверки ключа хоста
	Частные сети

	Модуль debug
	Интерактивный отладчик сценариев
	Модуль assert
	Проверка сценария перед запуском
	Проверка синтаксиса
	Список хостов
	Список задач
	Режим проверки
	Вывод изменений в файлах
	Теги
	Ограничение обслуживаемых хостов

	Заключение

	Глава 9
	Роли: масштабирование сценариев
	Базовая структура роли
	Пример: развертывание Mezzanine с использованием ролей
	Использование ролей в сценариях
	Предварительные и заключительные задачи
	Роль database для развертывания базы данных
	Роль mezzanine для развертывания Mezzanine

	Создание файлов и каталогов ролей с помощью ansible-galaxy
	Зависимые роли
	Ansible Galaxy
	Веб-интерфейс
	Интерфейс командной строки
	Требования к оформлению ролей на практике
	Как поделиться своей ролью

	Заключение

	Глава 10
	Сложные сценарии
	Решение проблем с неидемпотентными командами
	Фильтры
	Фильтр default
	Фильтры для зарегистрированных переменных
	Фильтры для путей к файлам
	Создание собственного фильтра

	Подстановки
	file
	pipe
	env
	password
	template
	csvfile
	dig
	redis
	Написание собственного плагина подстановки

	Сложные циклы
	Плагины with_*
	with_lines
	with_fileglob
	with_dict
	Циклические конструкции как плагины
подстановок

	Управление циклами
	Выбор имени переменной цикла
	Управление выводом

	Импортирование и подключение
	Динамическое подключение
	Подключение ролей
	Поток управления роли

	Блоки
	Обработка ошибок с помощью блоков
	Шифрование конфиденциальных данных при помощи Vault
	Шифрование с использованием разных паролей

	Заключение

	Глава 11
	Управление хостами,
задачами и обработчиками
	Шаблоны для выбора хостов
	Ограничение обслуживаемых хостов
	Запуск задачи на управляющей машине

	Сбор фактов вручную
	Получение IP-адреса хоста
	Запуск задачи на сторонней машине
	Последовательное выполнение задачи на хостах по одному
	Пакетная обработка хостов
	Однократный запуск
	Выбор задач для запуска
	step
	start-at-task
	Запуск действий с тегами
	Пропуск действий с тегами

	Стратегии выполнения
	linear
	free

	Улучшенные обработчики
	Обработчики в pre_tasks и post_tasks
	Принудительный запуск обработчиков
	Метакоманды
	Уведомление обработчиков из обработчиков
	Выполнение обработчиков по событиям
	Выполнение обработчиков по событиям:
случай SSL

	Заключение

	Глава 12
	Управление хостами Windows
	Подключение к Windows
	PowerShell
	Модули поддержки Windows
	Наша машина для разработки на Java
	Добавление локального пользователя
	Функции Windows
	Установка программного обеспечения
с помощью Chocolatey
	Настройки для поддержки Java
	Обновление Windows
	Заключение

	Глава 13
	Ansible и контейнеры
	Kubernetes
	Жизненный цикл приложения Docker
	Реестры
	Ansible и Docker
	Подключение к демону Docker
	Пример применения: Ghost
	Запуск контейнера Docker на локальной машине
	Создание образа из Dockerfile
	Отправка образа в реестр Docker
	Управление несколькими контейнерами на локальной машине
	Запрос информации о локальном образе
	Развертывание приложения в контейнере Docker
	MySQL
	Развертывание базы данных Ghost
	Веб-сервер
	Веб-сервер: Ghost
	Веб-сервер: NGINX
	Удаление контейнеров

	Заключение

	Глава 14
	Обеспечение качества с помощью Molecule
	Установка и настройка
	Настройка драйверов в Molecule
	Создание роли Ansible
	Сценарии Molecule
	Желаемое состояние
	Настройка сценариев в Molecule
	Управление виртуальными машинами
	Управление контейнерами

	Команды Molecule
	Статический анализ
	yamllint
	ansible-lint
	ansible-later

	Верификаторы
	Ansible
	Goss
	TestInfra

	Заключение

	Глава 15
	Коллекции
	Установка коллекций
	Вывод списка коллекций
	Использование коллекций в сценариях
	Разработка коллекций
	Заключение

	Глава 16
	Создание образов
	Создание образов с помощью Packer
	Vagrant VirtualBox VM
	Объединение Packer и Vagrant
	Облачные образы
	Google Cloud Platform
	Azure
	Amazon EC2
	Сценарий Ansible

	Образ Docker: GCC 11
	Заключение

	Глава 17
	Облачная инфраструктура
	Терминология
	Экземпляр
	Образ машины Amazon
	Теги

	Учетные данные пользователя
	Переменные окружения
	Файлы конфигурации

	Необходимое условие: библиотека Boto3 для Python
	Динамическая инвентаризация
	Кеширование реестра
	Другие параметры настройки

	Определение динамических групп с помощью тегов
	Присваивание тегов имеющимся ресурсам
	Создание более точных названий групп

	Виртуальные частные облака
	Конфигурирование ansible.cfg
для использования с ec2
	Запуск новых экземпляров
	Пары ключей EC2
	Создание нового ключа
	Выгрузка открытого ключа

	Группы безопасности
	Разрешенные IP-адреса
	Порты групп безопасности

	Получение последней версии AMI
	Добавление нового экземпляра в группу
	Ожидание запуска сервера
	Подведение итогов
	Создание виртуального частного облака
	Динамическая инвентаризация и VPC

	Заключение

	Глава 18
	Плагины обратного вызова
	Плагины стандартного вывода
	ARA
	debug
	default
	dense
	json
	minimal
	null
	oneline

	Плагины уведомлений и агрегирования
	Зависимости Python
	foreman
	jabber
	junit
	log_plays
	logentries
	logstash
	mail
	profile_roles
	profile_tasks
	say
	slack
	splunk
	timer

	Заключение

	Глава 19
	Собственные модули
	Пример: проверка доступности удаленного сервера
	Использование модуля script вместо написания своего модуля
	can_reach как модуль

	Когда следует разрабатывать модули?
	Где хранить свои модули
	Как Ansible вызывает модули
	Генерация автономного сценария на Python с аргументами (только модули на Python)
	Копирование модуля на хост
	Создание файла с аргументами на хосте
(для модулей не на языке Python)
	Вызов модуля

	Ожидаемый вывод
	Ожидаемые выходные переменные

	Реализация модулей на Python
	Анализ аргументов
	Доступ к параметрам
	Импортирование вспомогательного класса AnsibleModule
	Свойства аргументов
	AnsibleModule: параметры метода инициализатора
	Возврат признака успешного завершения или неудачи
	Вызов внешних команд
	Режим проверки (пробный прогон)

	Документирование модуля
	Отладка модуля
	Создание модуля на Bash
	Альтернативное местоположение интерпретатора Bash
	Заключение

	Глава 20
	Ускорение работы Ansible
	Мультиплексирование SSH и ControlPersist
	Включение мультиплексирования SSH вручную
	Параметры мультиплексирования SSH в Ansible

	Еще о настройке SSH
	Рекомендации по выбору алгоритмов

	Конвейерный режим
	Включение конвейерного режима
	Настройка хостов для поддержки конвейерного режима

	Mitogen для Ansible
	Кеширование фактов
	Кеширование фактов в файлах JSON
	Кеширование фактов в Redis
	Кеширование фактов в Memcached

	Параллелизм
	Асинхронное выполнение задач с помощью async
	Заключение

	Глава 21
	Сети и безопасность
	Управление сетевыми устройствами
	Список поддерживаемых производителей сетевого оборудования
	Ansible Connection для автоматизации управления сетевыми устройствами
	Привилегированный режим
	Реестр сетевых устройств
	Примеры использования автоматизации управления сетевыми устройствами

	Безопасность
	Соблюдение требований соответствия
	Защищено, но не безопасно
	Теневые ИТ-ресурсы
	Солнечные ИТ-ресурсы
	Нулевое доверие

	Заключение

	Глава 22
	CI/CD и Ansible
	Непрерывная интеграция
	Элементы системы непрерывной интеграции
	Jenkins и Ansible

	Обкатка
	Плагин Ansible
	Плагин Ansible Tower
	Заключение

	Глава 23
	Ansible Automation Platform
	Модели подписки
	Пробная версия Ansible Automation Platform

	Какие задачи решает Ansible Automation Platform
	Управление доступом

	Проекты
	Управление инвентаризацией
	Запуск заданий из шаблонов

	RESTful API
	AWX.AWX
	Установка
	Создание организации

	Создание реестра
	Запуск сценария с помощью шаблона задания

	Запуск Ansible в контейнерах
	Создание сред выполнения

	Заключение

	Глава 24
	Практические рекомендации
	Простота, модульность и сочетаемость
	Организуйте контент
	Отделяйте реестры от проектов
	Отделяйте роли и коллекции
	Сценарии
	Оформляйте код
	Снабжайте тегами и тестируйте все, что только возможно
	Описывайте желаемое состояние
	Доставляйте непрерывно
	Обеспечивайте безопасность
	Контролируйте развертывание
	Оценивайте эффективность
	Контрольные показатели
	Заключительные слова

	Библиография
	Об авторах
	Об изображении на обложке
	Предметный указатель
	Пустая страница
	Пустая страница

